$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Development of an organ‐specific insert phantom generated using a 3D printer for investigations of cardiac computed tomography protocols 원문보기

Journal of medical radiation sciences, v.65 no.3, 2018년, pp.175 - 183  

Abdullah, Kamarul A. (Discipline of Medical Radiation Sciences Faculty of Health Sciences The University of Sydney Lidcombe New South Wales Australia) ,  McEntee, Mark F. (Discipline of Medical Radiation Sciences Faculty of Health Sciences The University of Sydney Lidcombe New South Wales Australia) ,  Reed, Warren (Discipline of Medical Radiation Sciences Faculty of Health Sciences The University of Sydney Lidcombe New South Wales Australia) ,  Kench, Peter L. (Discipline of Medical Radiation Sciences Faculty of Health Sciences The University of Sydney Lidcombe New South Wales Australia)

Abstract AI-Helper 아이콘AI-Helper

AbstractIntroductionAn ideal organ‐specific insert phantom should be able to simulate the anatomical features with appropriate appearances in the resultant computed tomography (CT) images. This study investigated a 3D printing technology to develop a novel and cost‐effective cardiac in...

참고문헌 (32)

  1. 1 Oropallo W , Piegl LA . Ten challenges in 3D printing . Engineering with Computers 2015 ; 32 : 135 – 48 . 

  2. 2 Leng S , Chen B , Vrieze T , et al. Construction of realistic phantoms from patient images and a commercial three‐dimensional printer . J Med Imaging (Bellingham) 2016 ; 3 : 033501 . 27429998 

  3. 3 Michalski MH , Ross JS , Practice M . The shape of things to come: 3D printing in medicine . Am Med Assoc 2014 ; 312 : 2213 – 4 . 

  4. 4 Giannopoulos AA , Mitsouras D , Yoo SJ , Liu PP , Chatzizisis YS , Rybicki FJ . Applications of 3D printing in cardiovascular diseases . Nat Rev Cardiol 2016 ; 13 : 701 – 18 . 27786234 

  5. 5 Ebert LC , Thali MJ , Ross S . Getting in touch–3D printing in forensic imaging . Forensic Sci Int 2011 ; 211 : e1 – 6 . 21602004 

  6. 6 Miller BW , Moore JW , Barrett HH , et al. 3D printing in x‐ray and gamma‐ray imaging: A novel method for fabricating high‐density imaging apertures . Nucl Instrum Methods Phys Res A 2011 ; 659 : 262 – 8 . 22199414 

  7. 7 Goyanes A , Det‐Amornrat U , Wang J , Basit AW , Gaisford S . 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems . J Control Release 2016 ; 234 : 41 – 8 . 27189134 

  8. 8 Whiting BR , Hoeschen C , Solomon J , Bochud F , Samei E . Design of anthropomorphic textured phantoms for CT performance evaluation. Medical Imaging 2014: Physics of Medical Imaging ; 2014 . 

  9. 9 Leng S , Yu L , Vrieze T , Kuhlmann J , Chen B , McCollough CH . Construction of realistic liver phantoms from patient images using 3D printer and its application in CT image quality assessment . Proc SPIE Int Soc Opt Eng 2015 ; 2015 : 94124E . 

  10. 10 Madamesila J , McGeachy P , Villarreal Barajas JE , Khan R . Characterizing 3D printing in the fabrication of variable density phantoms for quality assurance of radiotherapy . Phys Med 2016 ; 32 : 242 – 7 . 26508016 

  11. 11 Kim MJ , Lee SR , Lee MY , et al. Characterization of 3D printing techniques: Toward patient specific quality assurance spine‐shaped phantom for stereotactic body radiation therapy . PLoS ONE 2017 ; 12 : e0176227 . 28472175 

  12. 12 Aurumskjold ML , Ydstrom K , Tingberg A , Soderberg M . Improvements to image quality using hybrid and model‐based iterative reconstructions: A phantom study . Acta Radiol 2017 ; 58 : 53 – 61 . 26924832 

  13. 13 Baek JH , Lee W , Chang KH , Chung JW , Park JH . Optimization of the scan protocol for the reduction of diaphragmatic motion artifacts depicted on CT angiography: A phantom study simulating pediatric patients with free breathing . Korean J Radiol 2009 ; 10 : 260 – 8 . 19412514 

  14. 14 Ghetti C , Ortenzia O , Serreli G . CT iterative reconstruction in image space: A phantom study . Phys Med 2012 ; 28 : 161 – 5 . 21497530 

  15. 15 Leng S , McGee K , Morris J , et al. Anatomic modeling using 3D printing: Quality assurance and optimization . 3D Print Med 2017 ; 3 : 1 – 14 . 30050978 

  16. 16 Solomon J , Samei E . Quantum noise properties of CT images with anatomical textured backgrounds across reconstruction algorithms: FBP and SAFIRE . Med Phys 2014 ; 41 : 091908 . 25186395 

  17. 17 Fedorov A , Beichel R , Kalpathy‐Cramer J , et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network . Magn Reson Imaging 2012 ; 30 : 1323 – 41 . 22770690 

  18. 18 Austen WG . A reporting system on patients evaluated for coronary artery disease . Circulation 1975 ; 51 : 5 – 40 . 1116248 

  19. 19 Bae KT . Intravenous contrast medium administration and scan timing at CT: Considerations and approaches . Radiology 2010 ; 256 : 32 – 61 . 20574084 

  20. 20 Abdullah KA , McEntee MF , Reed W , Kench PL . Using 3D printed cardiac CT phantom for dose reduction and diagnostic image quality assessment . J Med Radiat Sci 2017 ; 64 : 93 – 105 . 

  21. 21 Abdullah KA , McEntee MF , Reed W , Kench PL . Radiation dose and diagnostic image quality associated with iterative reconstruction in coronary CT angiography: A systematic review . J Med Imaging Radiat Oncol 2016 ; 60 : 459 – 68 . 27241506 

  22. 22 Willemink MJ , Takx RA , de Jong PA , et al. Computed tomography radiation dose reduction: Effect of different iterative reconstruction algorithms on image quality . J Comput Assist Tomogr 2014 ; 00 : 1 – 9 . 

  23. 23 Guariglia S , Meliadò G , Zivelonghi E , Pinali L , Montemezzi S , Cavedon C . Dose reduction and image quality in CT examinations using an iterative reconstruction algorithm: A phantom study . Biomed Phys Eng Express 2015 ; 1 : 045203 . 

  24. 24 Park EA , Lee W , Kim KW , et al. Iterative reconstruction of dual‐source coronary CT angiography: Assessment of image quality and radiation dose . Int J Cardiovasc Imaging 2012 ; 28 : 1775 – 86 . 22187198 

  25. 25 Tatsugami F , Matsuki M , Nakai G , et al. The effect of adaptive iterative dose reduction on image quality in 320‐detector row CT coronary angiography . Br J Radiol 2012 ; 85 : e378 – 82 . 22253355 

  26. 26 Wang R , Schoepf UJ , Wu R , et al. CT coronary angiography: Image quality with sinogram‐affirmed iterative reconstruction compared with filtered back‐projection . Clin Radiol 2013 ; 68 : 272 – 8 . 22981731 

  27. 27 Yoo RE , Park EA , Lee W , et al. Image quality of adaptive iterative dose reduction 3D of coronary CT angiography of 640‐slice CT: Comparison with filtered back‐projection . Int J Cardiovasc Imaging 2013 ; 29 : 669 – 76 . 22923280 

  28. 28 Cademartiri F , Nieman K , van der Lugt A , et al. Intravenous contrast material administration at 16‐detector row helical CT coronary angiography: Test bolus versus bolus‐tracking technique . Radiology 2004 ; 233 : 817 – 23 . 15516601 

  29. 29 Utsunomiya D , Weigold WG , Weissman G , Taylor AJ . Effect of hybrid iterative reconstruction technique on quantitative and qualitative image analysis at 256‐slice prospective gating cardiac CT . Eur Radiol 2012 ; 22 : 1287 – 94 . 22200900 

  30. 30 Carrascosa P , Rodriguez‐Granillo GA , Capunay C , Deviggiano A . Low‐dose CT coronary angiography using iterative reconstruction with a 256‐slice CT scanner . World J Cardiol 2013 ; 5 : 382 – 6 . 24198908 

  31. 31 Fuchs TA , Stehli J , Bull S , et al. Coronary computed tomography angiography with model‐based iterative reconstruction using a radiation exposure similar to chest X‐ray examination . Eur Heart J 2014 ; 35 : 1131 – 6 . 24553723 

  32. 32 Ionita CN , Mokin M , Varble N , et al. Challenges and limitations of patient‐specific vascular phantom fabrication using 3D Polyjet printing . Proc SPIE Int Soc Opt Eng 2014 ; 9038 : 90380M . 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로