$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

X-Ray Computer Tomography Study of Degradation of the Zircaloy-2 Tubes Oxidized at High Temperatures 원문보기

Advances in materials science, v.19 no.2, 2019년, pp.54 - 71  

Trybuś, B. (Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Materials Science and Welding Engineering, Narutowicza 11) ,  Olive, J. M. (sk, Poland) ,  Lenoir, N. (C.N.R.S., I2M, UMR 5295, 351 cours de la Liberation, Talence33405, France) ,  Zieliński, A. (PLACAMAT : Plateforme Aquitaine de Caracté)

Abstract

ABSTRACTThe investigations of high-temperature oxidation of zirconium alloys, applied for fuel pellets in nuclear power plants, are usually limited to oxidation kinetics, phase transformations and microstructural characterization. The purpose of this research was to characterize the degradation phenomena occurring within oxide layer and at the interface oxide/metal, on internal and external Zircaloy-2 tube surfaces, below and over crystalline transformation temperature of zirconium oxides. The commercial tubes were oxidized at 1273 K and 1373 K in calm air for 30 min and then examined with a technique novel for such purpose, namely a high-resolution X-ray computer tomography. The light microscopy was used to examine the cross-surfaces. The obtained results show that the form and intensity of oxide damage is significant and it is in a complicated way related to oxidation temperature and on whether external or internal tube surface is studied. The found oxide layer damage forms include surface cracks, the detachment of oxide layers, the appearance of voids, and nodular corrosion. The oxidation effects and damage appearance are discussed taking into account the processes such as formation of oxides, their phase transformation, stress-enhanced formation and propagation of cracks, diffusion of vacancies, formation of nitrides, diffusion of hydrogen into interface oxide-metal, incubation of cracks on second phase precipitates are taken into account to explain the observed phenomena.

주제어

참고문헌 (42)

  1. 10.1016/j.jnucmat.2012.06.026 1. Proff C., Abolhassani S., Lemaignan C., Oxidation behaviour of zirconium alloys and their precipitates - A mechanistic study. J. Nucl. Mater. 432 (2013) 222-238.10.1016/j.jnucmat.2012.06.026 

  2. 10.1016/B978-0-08-056033-5.00063-X 2. Allen T.R., Konings R.J.M., Motta A.T., Corrosion of zirconium alloys. [In] Comprehensive Nuclear Materials, R.J.M Konings. (ed.), Elsevier, Amsterdam, 2012, pp. 49-68.10.1016/B978-0-08-056033-5.00063-X 

  3. 10.1016/j.jnucmat.2011.09.014 3. Park K., Yang S., Ho K., The effect of high pressure steam on the oxidation of low-Sn Zircaloy-4 at temperatures between 700 and 900 °C. J. Nucl. Mater. 420 (2012) 39-48.10.1016/j.jnucmat.2011.09.014 

  4. 10.1016/j.jnucmat.2011.04.012 4. Steinbrück M., Böttcher M., Air oxidation of Zircaloy-4, M5 and ZIRLO cladding alloys at high temperatures. J. Nucl. Mater. 414 (2011) 276-285.10.1016/j.jnucmat.2011.04.012 

  5. 10.1016/j.jnucmat.2010.07.038 5. Coindreau C., Duriez C., Ederli S. : Air oxidation of Zircaloy-4 in the 600-1000 °C temperature range: Modeling for ASTEC code application. J. Nucl. Mater. 405 (2010) 207-215.10.1016/j.jnucmat.2010.07.038 

  6. 10.4236/ampc.2013.32023 6. Selmi N., Sari A., Study of oxidation kinetics in air of Zircaloy-4 by in situ X-Ray diffraction. Adv. Mater. Phys. Chem. 3 (2013) 168-173.10.4236/ampc.2013.32023 

  7. 10.1016/j.jnucmat.2011.05.028 7. Sawabe T., Sonoda T., Furuya M., Kitajima S., Kinoshita M., Tokiwai M., Microstructure of oxide layers formed on zirconium alloy by air oxidation, uniform corrosion and fresh-green surface modification. J. Nucl. Mater. 419 (2011) 310-319.10.1016/j.jnucmat.2011.05.028 

  8. 10.1016/j.corsci.2013.05.007 8. Gong W, Zhang H, Qiao Y., Tian H., Ni X., Li Z., Wang X., Grain morphology and crystal structure of pre-transition oxides formed on Zircaloy-4. Corr. Sci. 74 (2013) 323-331.10.1016/j.corsci.2013.05.007 

  9. 10.1016/j.jnucmat.2016.03.009 9. Harlow W., Ghassemi H., Taheri M.L., Determination of the initial oxidation behavior of Zircaloy-4 by in-situ TEM. J. Nucl. Mater. 474 (2016) 126-133.10.1016/j.jnucmat.2016.03.009 

  10. 10.1179/mht.2000.005 10. Ishii Y., Sykes J.M., Microstructure of oxide layers formed on Zircaloy-2 in air at 450°C. Mater. High Temp. 17 (2014) 23-28.10.1179/mht.2000.005 

  11. 10.1016/j.jnucmat.2012.05.003 11. Gosset D., Le Saux M.L., Simeone D., Gilbon D. : New insights in structural characterization of zirconium alloys oxidation at high temperature. J. Nucl. Mater. 429 (2012) 19-24.10.1016/j.jnucmat.2012.05.003 

  12. 10.1016/j.jnucmat.2014.12.067 12. Gosset D., Le Saux M.L., In-situ X-ray diffraction analysis of zirconia layer formed on zirconium alloys oxidized at high temperature. J. Nucl. Mater. 458 (2015) 245-252.10.1016/j.jnucmat.2014.12.067 

  13. 10.1016/j.jnucmat.2007.02.011 13. Baek J.H., Jeong Y.H., Breakaway phenomenon of Zr-based alloys during a high-temperature oxidation. J. Nucl. Mater. 372 (2008) 152-159.10.1016/j.jnucmat.2007.02.011 

  14. 10.1016/j.jnucmat.2013.10.044 14. Yamato M, Nagase F, Amaya M., Reduction in the onset time of breakaway oxidation on Zircaloy cladding ruptured under simulated LOCA conditions. J. Nucl. Mater. 445 (2014) 78-83.10.1016/j.jnucmat.2013.10.044 

  15. 10.1007/s11085-017-9737-1 15. Fettré D., Favergeon J., Bouvier S., Detection of breakaway for a high-temperature oxidation of pure zirconium using acoustic emission correlated to thermogravimetry. Oxid. Met. 87 (2017) 367-379.10.1007/s11085-017-9737-1 

  16. 10.1016/j.jnucmat.2011.06.039 16. Kim H.G., Kim I.H., Choi B.K., Park Y.Y., A study of the breakaway oxidation behavior of zirconium cladding materials. J. Nucl. Mater. 418 (2011) 186-197.10.1016/j.jnucmat.2011.06.039 

  17. 10.1016/S1005-0302(10)60132-6 17. Kim H.H., Kim J.H., Moon J.Y., Lee H.S., Kim J.J., Chai Y.S., High-temperature oxidation behavior of Zircaloy-4 and Zirlo in steam ambient. J. Mater. Sci. Technol. 26 (2010) 827-832.10.1016/S1005-0302(10)60132-6 

  18. 10.1515/adms-2017-0030 18. Zienkiewicz N., Paradowska J., Serbinski W., Gajowiec G., Hernik A., Zielinski A., Oxidation and hydrogen behavior in Zr-2Mn alloy. Adv. Mater. Sci. 18 (2018) 37-48.10.1515/adms-2017-0030 

  19. 10.1016/j.corsci.2017.09.014 19. Annand K., Nord M., Maclaren I., Gass M., The corrosion of Zr(Fe, Cr)2 and Zr2Fe secondary phase particles in Zircaloy-4 under 350 °C pressurised water conditions. Corr. Sci. 128 (2017) 213-223.10.1016/j.corsci.2017.09.014 

  20. 10.1016/j.jnucmat.2011.03.010 20. Park D.J., Park J.Y., Jeong J.H., Microstructural analysis and XPS investigation of nodular oxides formed on Zircaloy-4. J. Nucl. Mater. 412 (2011) 233-238.10.1016/j.jnucmat.2011.03.010 

  21. 10.1016/j.jnucmat.2017.10.013 21. Lee C.M., Mok Y.K., Sohn D.S. : High-temperature steam oxidation and oxide crack effects of Zr-1Nb-1Sn-0.1Fe fuel cladding. J. Nucl. Mater. 496 (2017) 343-352.10.1016/j.jnucmat.2017.10.013 

  22. 10.1016/j.jnucmat.2014.05.006 22. Nikulin S.A., Rogachev S.O., Rozhnov A.B., Gusev A.Yu., Malgin A.G., Abramov N.N., Zharotsheva K.S., Khatkevich V.M., Koteneva M.V., Li E.V., The mechanism and kinetics of the fuel cladding failure during loading after high-temperature oxidation. J. Nucl. Mater. 452 (2014) 102-109.10.1016/j.jnucmat.2014.05.006 

  23. 10.1016/j.corsci.2011.08.013 23. Ni N., Lozano-Perez S., Sykes J.M., Smith G.D.W., Grovenor C.R.M., Focussed ion beam sectioning for the 3D characterisation of cracking in oxide scales formed on commercial ZIRLO™ alloys during corrosion in high temperature pressurised water. Corr. Sci. 53 (2011) 4073-4083.10.1016/j.corsci.2011.08.013 

  24. 10.3184/096034012X13334555476487 24. Ni N., Lozano-Perez S., Sykes J., Grovenor C. : Multi-scale characterisation of oxide on zirconium alloys. Mater. High. Temp. 29 (2014) 166-170.10.3184/096034012X13334555476487 

  25. 10.1007/s11085-011-9249-3 25. Steinbrück M., Vér N., Große M., Oxidation of Advanced Zirconium Cladding Alloys in Steam at Temperatures in the Range of 600-1200 °C. Oxid. Met. 76 (2011) 215-232.10.1007/s11085-011-9249-3 

  26. 10.1007/s11085-005-6563-7 26. Favergeon J., Montesin T., Mechano-Chemical Aspects of High Temperature Oxidation: A Mesoscopic Model Applied to Zirconium Alloys. Met. Oxid. 64 (2005) 252-279.10.1007/s11085-005-6563-7 

  27. 10.1016/j.jnucmat.2008.07.002 27. Duriez C., Dupont T., Schmet B., Enoch F., Zircaloy-4 and M5® high temperature oxidation and nitriding in air. J. Nucl. Mater. 380 (2008) 30-45.10.1016/j.jnucmat.2008.07.002 

  28. 10.1016/j.ijhydene.2016.01.174 28. Zeng C., Ling Y., Bai Y., Zhang R., Dai X., Chen Y., Hydrogen permeation characteristic of nanoscale passive films formed on different zirconium alloys. Intl. J. Hydrogen Energy 41 (2016) 7676-7690.10.1016/j.ijhydene.2016.01.174 

  29. 10.1515/htmp-2017-0074 29. Zieliński A., Cymann A., Gumiński A., Hernik A., Gajowiec G., Influence of high temperature oxidation hydrogen absorption and degradation of Zircaloy-2 and Zr 700 alloys. High Temp. Mater. Proc. 38 (2019) 8-15.10.1515/htmp-2017-0074 

  30. 10.1016/S0022-3115(01)00695-X 30. Yoo H.-I., Koo B.-J., Hong J.-O., Hwang I.-S., Yeong I.-H., A working hypothesis on oxidation kinetics of Zircaloy. J. Nucl. Mater. 299 (2001) 235-241.10.1016/S0022-3115(01)00695-X 

  31. 10.1016/S0925-8388(02)00527-3 31. Lee K. W., Hong S.I., Zirconium hydrides and their effect on the circumferential mechanical properties of Zr-Sn-Fe-Nb tubes. J. Alloys Cmpds 346 (2002) 302-307.10.1016/S0925-8388(02)00527-3 

  32. 32. Kurpaska L., Jozwik I., Jagielski J., Study of sub-oxide phases at the metal-oxide interface in oxidized pure zirconium and Zr-1.0% Nb alloy by using SEM/FIB/EBSD and EDS techniques. J. Nucl. Mater. 299 (2001) 235-241. 

  33. 10.1016/j.jnucmat.2014.09.073 33. De Gabory B., Motta A.T., Wang K., Transmission electron microscopy characterization of Zircaloy-4 and ZIRLO™ oxide layers. J. Nucl. Mater. 456 (2015) 272-280.10.1016/j.jnucmat.2014.09.073 

  34. 10.1016/j.jnucmat.2012.06.039 34. Tejland P., Andrén H.-A., Origin and effect of lateral cracks in oxide scales formed on zirconium alloys. J. Nucl. Mater. 430 (2012) 64-71.10.1016/j.jnucmat.2012.06.039 

  35. 10.1016/j.corsci.2015.03.004 35. Guerain M., Duriez C., Grosseau-Poussard J.L., Mermoux M., Review of stress fields in zirconium alloys corrosion scales. Corr. Sci. 95 (2015) 11-21.10.1016/j.corsci.2015.03.004 

  36. 10.1080/09603409.2017.1392412 36. Baris S., Abolhassani Y.L., Chiu L., Evans H.E., (2018) Observation of crack microstructure in oxides and its correlation to oxidation and hydrogen-uptake by 3D FIB Tomography - case of Zr-ZrO2 in reactor. Mater. High Temp. 35 (2018) 14-21.10.1080/09603409.2017.1392412 

  37. 10.1016/j.anucene.2011.10.019 37. Birchley J., Fernandez-Moguel L. : Simulation of air oxidation during a reactor accident sequence: Part 1 - Phenomenology and model development. Ann. Nucl. Energy. 40 (2012) 163-170.10.1016/j.anucene.2011.10.019 

  38. 10.1016/S0022-3115(98)00613-8 38. Rudling P., Wikmark G.A., A unified model of Zircaloy BWR corrosion and hydriding mechanisms. J. Nucl. Mater. 265 (1999) 44-59.10.1016/S0022-3115(98)00613-8 

  39. 10.1016/j.jnucmat.2005.10.012 39. Yilmazbayhan A., Breval E., Motta A.T., Comstock R.J., Transmission electron microscopy examination of oxide layers formed on Zr alloys. J. Nucl. Mater. 349 (2006) 265-281.10.1016/j.jnucmat.2005.10.012 

  40. 10.1016/j.pnucene.2009.07.012 40. Steinbrück M., Birchley J., Boldyrev A.V., Goryachev A.V., Grosse M., Haste T.J., Hózer Z., Kisselev A.E., Nalivaev V.I., Semishkin V.P., Sepold L., Stuckert J., Vér N., Veshchunov M.S., High temperature oxidation and quench behaviour of Zircaloy-4 and E110 cladding alloys. Progr. Nucl. Energy 52 (2010) 19-36.10.1016/j.pnucene.2009.07.012 

  41. 10.1016/0022-3115(83)90199-X 41. Kawashima N.K.S.H., Mechanism of zircaloy nodular corrosion J. Nucl. Mater. 119 (1983) 229-239.10.1016/0022-3115(83)90199-X 

  42. 10.1016/j.jnucmat.2009.04.003 42. Likhanskii V.V., Evdokimov L.A., Effect of additives on the susceptibility of zirconium alloys to nodular corrosion. J. Nucl. Mater. 392 (2009) 447-452.10.1016/j.jnucmat.2009.04.003 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로