$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Drug screening of biopsy-derived spheroids using a self-generated microfluidic concentration gradient 원문보기

Scientific reports, v.8, 2018년, pp.14672 -   

Mulholland, Theresa (Centre for Microsystems and Photonics, Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW UK) ,  McAllister, Milly (Institute of Cancer Science, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH UK) ,  Patek, Samantha (Institute of Cancer Science, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH UK) ,  Flint, David (Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE UK) ,  Underwood, Mark (Department of Urology, Queen Elizabeth University Hospital, Glasgow, G51 4TF UK) ,  Sim, Alexander (AMS Biotechnology (Europe) Ltd, Milton Park, Abingdon, OX14 4SE UK) ,  Edwards, Joanne (Institute of Cancer Science, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH UK) ,  Zagnoni, Michele (Centre for Microsystems and Photonics, Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW UK)

Abstract AI-Helper 아이콘AI-Helper

Performing drug screening of tissue derived from cancer patient biopsies using physiologically relevant 3D tumour models presents challenges due to the limited amount of available cell material. Here, we present a microfluidic platform that enables drug screening of cancer cell-enriched multicellula...

참고문헌 (53)

  1. 1. Bissell MJ Radisky D Putting tumours in context Nat. Rev. Cancer 2001 1 46 54 10.1038/35094059 11900251 

  2. 2. Nelson CM Bissell MJ Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer Annu. Rev. Cell Dev. Biol. 2006 22 287 309 10.1146/annurev.cellbio.22.010305.104315 16824016 

  3. 3. Yamada KM Cukierman E Modeling tissue morphogenesis and cancer in 3D Cell 2007 130 601 610 10.1016/j.cell.2007.08.006 17719539 

  4. 4. Breslin S O’Driscoll L Three-dimensional cell culture: the missing link in drug discovery Drug Discov. Today 2013 18 240 9 10.1016/j.drudis.2012.10.003 23073387 

  5. 5. Lemmo S Atefi E Luker GD Tavana H Optimization of Aqueous Biphasic Tumor Spheroid Microtechnology for Anti-cancer Drug Testing in 3D Culture Cell. Mol. Bioeng. 2014 7 344 354 10.1007/s12195-014-0349-4 25221631 

  6. 6. Tung Y-C High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array Analyst 2011 136 473 478 10.1039/C0AN00609B 20967331 

  7. 7. Pickl M Ries CH Comparison of 3D and 2D tumor models reveals enhanced HER2 activation in 3D associated with an increased response to trastuzumab Oncogene 2009 28 461 468 10.1038/onc.2008.394 18978815 

  8. 8. Ruppen J Towards personalized medicine: chemosensitivity assays of patient lung cancer cell spheroids in a perfused microfluidic platform Lab Chip 2015 15 3076 3085 10.1039/C5LC00454C 26088102 

  9. 9. Dobrolecki LE Patient-derived xenograft (PDX) models in basic and translational breast cancer research Cancer Metastasis Rev. 2016 35 547 573 10.1007/s10555-016-9653-x 28025748 

  10. 10. Hidalgo M Patient-derived Xenograft models: An emerging platform for translational cancer research Cancer Discov. 2014 4 998 1013 10.1158/2159-8290.CD-14-0001 25185190 

  11. 11. Siolas D Hannon GJ Patient-derived tumor xenografts: Transforming clinical samples into mouse models Cancer Res. 2013 73 5315 5319 10.1158/0008-5472.CAN-13-1069 23733750 

  12. 12. Santini MT Rainaldi G Three-dimensional spheroid model in tumor biology Pathobiology 1999 67 148 157 10.1159/000028065 10394136 

  13. 13. Friedrich J Seidel C Ebner R Kunz-Schughart LA Spheroid-based drug screen: considerations and practical approach Nat. Protoc. 2009 4 309 24 10.1038/nprot.2008.226 19214182 

  14. 14. Ferreira LP Gaspar VM Mano JF Design of spherically structured 3D in vitro tumor models -Advances and prospects Acta Biomater. 2018 75 11 34 10.1016/j.actbio.2018.05.034 29803007 

  15. 15. Souza GR Three-dimensional Tissue Culture Based on Magentic Cell Levitation Nat. Nanotechnol. 2010 5 291 296 10.1038/nnano.2010.23 20228788 

  16. 16. Håkanson M Cukierman E Charnley M Miniaturized pre-clinical cancer models as research and diagnostic tools Adv. Drug Deliv. Rev. 2014 69–70 52 66 10.1016/j.addr.2013.11.010 

  17. 17. Mehling M Tay S Microfluidic cell culture Curr. Opin. Biotechnol. 2014 25 95 102 10.1016/j.copbio.2013.10.005 24484886 

  18. 18. Sung Kyung Eun Beebe David J. Microfluidic 3D models of cancer Advanced Drug Delivery Reviews 2014 79-80 68 78 10.1016/j.addr.2014.07.002 25017040 

  19. 19. Li XJ Valadez AV Zuo P Nie Z Microfluidic 3D cell culture: potential application for tissue- based bioassays Bioanalysis 2012 4 1509 1525 10.4155/bio.12.133 22793034 

  20. 20. Kim S Kim HJ Jeon NL Biological applications of microfluidic gradient devices Integr. Biol. 2010 2 584 10.1039/c0ib00055h 

  21. 21. Keenan TM Folch A Biomolecular gradients in cell culture systems Lab Chip 2008 8 34 57 10.1039/B711887B 18094760 

  22. 22. Zhang H Microfluidic gradient device for studying mesothelial cell migration and the effect of chronic carbon nanotube exposure J. Micromechanics Microengineering 2015 25 075010 10.1088/0960-1317/25/7/075010 

  23. 23. Kwapiszewska K Michalczuk A Rybka M Kwapiszewski R Brzózka Z A microfluidic-based platform for tumour spheroid culture, monitoring and drug screening Lab Chip 2014 14 2096 104 10.1039/C4LC00291A 24800721 

  24. 24. Ziółkowska K Development of a three-dimensional microfluidic system for long-term tumor spheroid culture Sensors Actuators, B Chem. 2012 173 908 913 10.1016/j.snb.2012.07.045 

  25. 25. Kim J-Y Fluri DA Kelm JM Hierlemann A Frey O 96-Well Format-Based Microfluidic Platform for Parallel Interconnection of Multiple Multicellular Spheroids J. Lab. Autom. 2014 20 274 282 10.1177/2211068214564056 25524491 

  26. 26. Halfter K Mayer B Bringing 3D tumor models to the clinic – predictive value for personalized medicine Biotechnol. J. 2017 12 1 16 10.1002/biot.201600295 

  27. 27. Oh KW Lee K Ahn B Furlani EP Design of pressure-driven microfluidic networks using electric circuit analogy Lab Chip 2012 12 515 45 10.1039/C2LC20799K 22179505 

  28. 28. Robertson G Bushell TJ Zagnoni M Chemically induced synaptic activity between mixed primary hippocampal co-cultures in a microfluidic system Integr. Biol. (Camb). 2014 6 636 44 10.1039/C3IB40221E 24796407 

  29. 29. Schindelin J Fiji: an open-source platform for biological-image analysis Nat. Methods 2012 9 676 682 10.1038/nmeth.2019 22743772 

  30. 30. Grundy, T. J. et al . Differential response of patient- derived primary glioblastoma cells to environmental stiffness. Nat . Publ . Gr . 4–13, 10.1038/srep23353 (2016). 

  31. 31. Kelm JM Timmins NE Brown CJ Fussenegger M Nielsen LK Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types Biotechnol. Bioeng. 2003 83 173 180 10.1002/bit.10655 12768623 

  32. 32. Patra B A microfluidic device for uniform-sized cell spheroids formation, culture, harvesting and flow cytometry analysis Biomicrofluidics 2013 7 54114 10.1063/1.4824480 24396525 

  33. 33. Han C Integration of single oocyte trapping, in vitro fertilization and embryo culture in a microwell-structured microfluidic device Lab Chip 2010 10 2848 2854 10.1039/c005296e 20844784 

  34. 34. Mellor HR The influence of tumour microenvironmental factors on the efficacy of cisplatin and novel platinum(IV) complexes Biochem. Pharmacol. 2005 70 1137 46 10.1016/j.bcp.2005.07.016 16139250 

  35. 35. Thakuri PS Ham SL Luker GD Tavana H Multiparametric Analysis of Oncology Drug Screening with Aqueous Two-Phase Tumor Spheroids Mol. Pharm. 2016 13 3724 3735 10.1021/acs.molpharmaceut.6b00527 27653969 

  36. 36. Ruppen J A microfluidic platform for chemoresistive testing of multicellular pleural cancer spheroids Lab Chip 2014 14 1198 205 10.1039/C3LC51093J 24496222 

  37. 37. Godugu Chandraiah Patel Apurva R. Desai Utkarsh Andey Terrick Sams Alexandria Singh Mandip AlgiMatrix™ Based 3D Cell Culture System as an In-Vitro Tumor Model for Anticancer Studies PLoS ONE 2013 8 1 e53708 10.1371/journal.pone.0053708 23349734 

  38. 38. Strese S Fryknäs M Larsson R Gullbo J Effects of hypoxia on human cancer cell line chemosensitivity BMC Cancer 2013 13 331 10.1186/1471-2407-13-331 23829203 

  39. 39. Memarzadeh S Enhanced Paracrine FGF10 Expression Promotes Formation of Multifocal Prostate Adenocarcinoma and an Increase in Epithelial Androgen Receptor Cancer Cell 2007 12 572 585 10.1016/j.ccr.2007.11.002 18068633 

  40. 40. Hollenberg MD Cuatrecasas P Epidermal growth factor: receptors in human fibroblasts and modulation of action by cholera toxin Proc. Natl. Acad. Sci. USA 1973 70 2964 8 10.1073/pnas.70.10.2964 4355377 

  41. 41. Gao D Organoid Cultures Derived from Patients with Advanced Prostate Cancer. Cell 2014 159 176 187 

  42. 42. Golshayan AR Antonarakis ES Enzalutamide: an evidence-based review of its use in the treatment of prostate cancer Core Evid. 2013 8 27 35 23589709 

  43. 43. Joseph JD A clinically relevant androgen receptor mutation confers resistance to second-generation antiandrogens enzalutamide and ARN-509 Cancer Discov. 2013 3 1020 1029 10.1158/2159-8290.CD-13-0226 23779130 

  44. 44. Tan ME Li J Xu HE Melcher K Yong E Androgen receptor: structure, role in prostate cancer and drug discovery Acta Pharmacol. Sin. 2015 36 3 23 10.1038/aps.2014.18 24909511 

  45. 45. Beer M A novel microfluidic 3D platform for culturing pancreatic ductal adenocarcinoma cells: comparison with in vitro cultures and in vivo xenografts Sci. Rep. 2017 7 1325 10.1038/s41598-017-01256-8 28465513 

  46. 46. Paraiso KHT Smalley KSM Fibroblast-mediated drug resistance in cancer Biochem. Pharmacol. 2013 85 1033 1041 10.1016/j.bcp.2013.01.018 23376122 

  47. 47. Onion D 3-Dimensional Patient-Derived Lung Cancer Assays Reveal Resistance to Standards-of-Care Promoted by Stromal Cells but Sensitivity to Histone Deacetylase Inhibitors Mol. Cancer Ther. 2016 15 753 763 10.1158/1535-7163.MCT-15-0598 26873730 

  48. 48. Eder T Cancer-associated fibroblastsmodify the response of prostate cancer cells to androgen and anti-androgens in three-dimensional spheroid culture Int. J. Mol. Sci. 2016 17 1 15 10.3390/ijms17091458 

  49. 49. van de Wetering M Prospective Derivation of a Living Organoid Biobank of Colorectal Cancer Patients Cell 2015 161 933 945 10.1016/j.cell.2015.03.053 25957691 

  50. 50. Patra B Peng C-C Liao W-H Lee C-H Tung Y-C Drug testing and flow cytometry analysis on a large number of uniform sized tumor spheroids using a microfluidic device Sci. Rep. 2016 6 21061 10.1038/srep21061 26877244 

  51. 51. De Wever O Modeling and quantification of cancer cell invasion through collagen type I matrices Int. J. Dev. Biol. 2010 54 887 896 10.1387/ijdb.092948ow 19757378 

  52. 52. Estrada Marta F. Rebelo Sofia P. Davies Emma J. Pinto Marta T. Pereira Hugo Santo Vítor E. Smalley Matthew J. Barry Simon T. Gualda Emilio J. Alves Paula M. Anderson Elizabeth Brito Catarina Modelling the tumour microenvironment in long-term microencapsulated 3D co-cultures recapitulates phenotypic features of disease progression Biomaterials 2016 78 50 61 10.1016/j.biomaterials.2015.11.030 26650685 

  53. 53. Zanoni M 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained Sci. Rep. 2016 6 19103 10.1038/srep19103 26752500 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로