$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Surface Finish and Back-Wall Dross Behavior during the Fiber Laser Cutting of AZ31 Magnesium Alloy 원문보기

Micromachines, v.9 no.10, 2018년, pp.485 -   

García-López, Erika (Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Monterrey 64849, Mexico) ,  Ibarra-Medina, Juansethi R. (garcia.erika@itesm.mx (E.G.-L.)) ,  Siller, Hector R. (juansethi@itesm.mx (J.R.I.-M.)) ,  Lammel-Lindemann, Jan A. (drlammel@itesm.mx (J.A.L.-L.)) ,  Rodriguez, Ciro A. (Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Monterrey 64849, Mexico)

Abstract AI-Helper 아이콘AI-Helper

Magnesium alloys are of increasing interest in the medical industry due to their biodegradability properties and better mechanical properties as compared to biodegradable polymers. Fiber laser cutting of AZ31 magnesium alloy tubes was carried out to study the effect of cutting conditions on wall sur...

주제어

참고문헌 (37)

  1. 1. Sigwart U. Puel J. Mirkovitch V. Joffre F. Kappenberger L. Intravascular stents to prevent occlusion and re-stenosis after transluminal angioplasty N. Engl. J. Med. 1987 316 701 706 10.1056/NEJM198703193161201 2950322 

  2. 2. Roubin G.S. Cannon A.D. Agrawal S.K. Macander P.J. Dean L.S. Baxley W.A. Breland J. Intracoronary stenting for acute and threatened closure complicating percutaneous transluminal coronary angioplasty Circulation 1992 85 916 927 10.1161/01.CIR.85.3.916 1537128 

  3. 3. Moravej M. Mantovani D. Biodegradable metals for cardiovascular stent application: Interests and new opportunities Int. J. Mol. Sci. 2011 12 4250 4270 10.3390/ijms12074250 21845076 

  4. 4. Schatz R.A. Goldberg S. Leon M. Baim D. Hirshfeld J. Cleman M. Ellis S. Topol E. Clinical experience with the Palmaz-Schatz coronary stent J. Am. Coll. Cardiol. 1991 17 155 159 10.1016/0735-1097(91)90952-6 

  5. 5. Byrne R.A. Stone G.W. Ormiston J. Kastrati A. Coronary balloon angioplasty, stents, and scaffolds Lancet 2017 390 781 792 10.1016/S0140-6736(17)31927-X 28831994 

  6. 6. Waksman R. Erbel R. Di Mario C. Bartunek J. de Bruyne B. Eberli F.R. Erne P. Haude M. Horrigan M. Ilsley C. Early- and long-term intravascular ultrasound and angiographic findings after bioabsorbable magnesium stent implantation in human coronary arteries JACC Cardiovasc. Interv. 2009 2 312 320 10.1016/j.jcin.2008.09.015 19463443 

  7. 7. Gastaldi D. Sassi V. Petrini L. Vedani M. Trasatti S. Migliavacca F. Continuum damage model for bioresorbable magnesium alloy devices—Application to coronary stents J. Mech. Behav. Biomed. Mater. 2011 4 352 365 10.1016/j.jmbbm.2010.11.003 21316623 

  8. 8. Staiger M.P. Pietak A.M. Huadmai J. Dias G. Magnesium and its alloys as orthopedic biomaterials: A review Biomaterials 2006 27 1728 1734 10.1016/j.biomaterials.2005.10.003 16246414 

  9. 9. Wong H.M. Yeung K.W. Lam K.O. Tam V. Chu P.K. Luk K.D. Cheung K.M. A biodegradable polymer-based coating to control the performance of magnesium alloy orthopedic implants Biomaterials 2010 31 2084 2096 10.1016/j.biomaterials.2009.11.111 20031201 

  10. 10. Kitabata H. Waksman R. Warnack B. Bioresorbable metal scaffold for cardiovascular application: Current knowledge and future perspectives Cardiovasc. Revascularization Med. Mol. Interv. 2014 15 109 116 10.1016/j.carrev.2014.01.011 24684760 

  11. 11. Persaud-Sharma D. McGoron A. Biodegradable Magnesium Alloys: A review of material development and applications J. Biomim. Biomater. Tissue Eng. 2012 12 25 39 10.4028/www.scientific.net/JBBTE.12.25 22408600 

  12. 12. Erbel R. Di Mario C. Bartunek J. Bonnier J. de Bruyne B. Eberli F.R. Erne P. Haude M. Heublein B. Horrigan M. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: A prospective, non-randomised multicentre trial Lancet 2007 369 1869 1875 10.1016/S0140-6736(07)60853-8 17544767 

  13. 13. Witte F. The history of biodegradable magnesium implants: A review Acta Biomater. 2010 6 1680 1692 10.1016/j.actbio.2010.02.028 20172057 

  14. 14. Demir A.G. Previtali B. Ge Q. Vedani M. Wu W. Migliavacca F. Bestetti M. Biodegradable magnesium coronary stents: Material, design and fabrication Int. J. Comput. Integr. Manuf. 2014 27 936 945 10.1080/0951192X.2013.834475 

  15. 15. Demir A.G. Previtali B. Colombo D. Ge Q. Vedani M. Petrini L. Biffi C.A. Fiber laser micromachining of magnesium alloy tubes for biocompatible and biodegradable cardiovascular stents Proceedings of the Fiber Lasers IX: Technology, Systems, and Applications San Francisco, CA, USA 15 February 2012 823730 

  16. 16. Scintilla L.D. Tricarico L. Laser cutting of lightweight alloys sheets with 1μm laser wavelength Proceedings of the High-Power Laser Materials Processing: Lasers, Beam Delivery, Diagnostics, and Applications II San Francisco, CA, USA 22 February 2013 86030U 

  17. 17. Scintilla L.D. Tricarico L. Experimental investigation on fiber and CO 2 inert gas fusion cutting of AZ31 magnesium alloy sheets Opt. Laser Technol. 2013 46 42 52 10.1016/j.optlastec.2012.04.026 

  18. 18. Demir A.G. Previtali B. Biffi C.A. Fibre laser cutting and chemical etching of AZ31 for manufacturing biodegradable stents Adv. Mater. Sci. Eng. 2013 2013 1 11 10.1155/2013/692635 

  19. 19. Grogan J.A. Leen S.B. McHugh P.E. Comparing coronary stent material performance on a common geometric platform through simulated bench testing J. Mech. Behav. Biomed. Mater. 2012 12 129 138 10.1016/j.jmbbm.2012.02.013 22705476 

  20. 20. Demir A.G. Previtali B. Comparative study of CW, nanosecond- and femtosecond-pulsed laser microcutting of AZ31 magnesium alloy stents Biointerphases 2014 9 029004 10.1116/1.4866589 24985208 

  21. 21. Demir A.G. Previtali B. Dross-free submerged laser cutting of AZ31 Mg alloy for biodegradable stents J. Laser Appl. 2016 28 032001 10.2351/1.4944751 

  22. 22. Sealy M.P. Guo M.P. Liu J.F. Li C. Pulsed laser cutting of magnesium for biodegradable stents Procedia CIRP 2016 42 67 72 10.1016/j.procir.2016.02.190 

  23. 23. Farè S. Ge Q. Vedani M. Vimercati G. Gastaldi D. Migliavacca F. Petrini L. Trasatti S. Evaluation of material properties and design requirements for biodegradable magnesium stents Matéria (Rio de Janeiro) 2010 15 96 103 

  24. 24. Li N. Guo C. Wu Y.H. Zheng Y.F. Ruan L.Q. Comparative study on corrosion behavior of pure Mg and WE43 alloy in static, stirring and flowing Hank’s solution Corros. Eng. Sci. Technol. 2010 47 346 351 10.1179/1743278212Y.0000000006 

  25. 25. Haude M. Ince H. Abizaid A. Toelg R. Lemos P.A. von Birgelen C. Waksman R. Safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de-novo coronary artery lesions (BIOSOLVE-II): 6 month results of a prospective, multicentre, non-randomised, first-in-man trial Lancet 2016 387 31 39 10.1016/S0140-6736(15)00447-X 26470647 

  26. 26. Di Mario C. Griffiths H.U.W. Goktekin O. Peeters N. Verbist J.A.N. Bosiers M. Deloose K. Heublein B. Rohde R. Kasese V. Drug-eluting bioabsorbable magnesium stent J. Interv. Cardiol. 2004 17 391 395 10.1111/j.1540-8183.2004.04081.x 15546291 

  27. 27. Muhammad N. Whitehead D. Boor A. Li L. Comparison of dry and wet fibre laser profile cutting of thin 316L stainless steel tubes for medical device applications J. Mater. Process. Technol. 2010 210 2261 2267 10.1016/j.jmatprotec.2010.08.015 

  28. 28. Muhammad N. Li L. Underwater femtosecond laser micromachining of thin nitinol tubes for medical coronary stent manufacture Appl. Phys. A 2012 107 849 861 10.1007/s00339-012-6795-8 

  29. 29. Preco (2012) Beam Final Test Results; Model Number: YLR 1501500QC WMMACY11, Serial Number: PLMP1202236 IPG Photonics Oxford, MA, USA 2012 1 5 

  30. 30. IPG photonics (2012) YLR User Guide Available online: http://docshare04.docshare.tips/files/25907/259076862.pdf (accessed on 24 September 2018) 

  31. 31. Ghany K.A. Newishy M. Cutting of 1.2 mm thick austenitic stainless steel sheet using pulsed and CW Nd: YAG laser J. Mater. Process. Technol. 2005 168 438 447 10.1016/j.jmatprotec.2005.02.251 

  32. 32. Criales L.E. Orozco P.F. Medrano A. Rodríguez C.A. Özel T. Effect of fluence and pulse overlapping on fabrication of microchannels in PMMA/PDMS via UV laser micromachining: Modeling and experimentation Mater. Manuf. Process. 2015 30 890 901 10.1080/10426914.2015.1004690 

  33. 33. García-López E. Medrano-Tellez A.G. Ibarra-Medina J.R. Siller H.R. Rodriguez C.A. Experimental study of back wall dross and surface roughness in fiber laser microcutting of 316l miniature tubes Micromachines 2017 9 4 10.3390/mi9010004 

  34. 34. Image J. Available online: https://imagej.nih.gov/ij/ (accessed on 3 September 2018) 

  35. 35. Box G.E. Draper N.R. A basis for the selection of a response surface design J. Am. Stat. Assoc. 1959 54 622 654 10.1080/01621459.1959.10501525 

  36. 36. Sharma A. Yadava V. Experimental analysis of Nd-YAG laser cutting of sheet materials—A review Opt. Laser Technol. 2018 98 264 280 10.1016/j.optlastec.2017.08.002 

  37. 37. Li Y. Chen Y. Cui H. Xiong B. Zhang J. Microstructure and mechanical properties of spray-formed AZ91 magnesium alloy Mater. Charact. 2009 60 240 245 10.1016/j.matchar.2008.09.007 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로