$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Critical Flicker Fusion Frequency: A Marker of Cerebral Arousal During Modified Gravitational Conditions Related to Parabolic Flights 원문보기

Frontiers in physiology, v.9, 2018년, pp.1403 -   

Balestra, Costantino (Environmental, Occupational and Ageing “Integrative Physiology” Laboratory, Haute Ecole Bruxelles-Brabant (HE2B) , Brussels , Belgium) ,  Machado, Marie-Laure (UNICAEN, INSERM, COMETE, Normandie Université) ,  Theunissen, Sigrid (, Caen , France) ,  Balestra, Ambre (Environmental, Occupational and Ageing “Integrative Physiology” Laboratory, Haute Ecole Bruxelles-Brabant (HE2B) , Brussels , Belgium) ,  Cialoni, Danilo (Environmental, Occupational and Ageing “Integrative Physiology” Laboratory, Haute Ecole Bruxelles-Brabant (HE2B) , Brussels , Belgium) ,  Clot, Christian (Divers Alert Network (DAN) Europe Research Division , Brussels , Belgium) ,  Besnard, Stépane (Environmental, Occupational and Ageing “Integrative Physiology” Laboratory, Haute Ecole Bruxelles-Brabant (HE2B) , Brussels , Belgium) ,  Kammacher, Laura (UNICAEN, INSERM, COMETE, Normandie Université) ,  Delzenne, Julie (, Caen , France) ,  Germonpré, Peter (UNICAEN, INSERM, COMETE, Norm) ,  Lafère, Pierre

Abstract AI-Helper 아이콘AI-Helper

In situ evaluation of human brain performance and arousal remains challenging during operational circumstances, hence the need for a rapid, reliable and reproducible tool. Here we hypothesized that the Critical flicker fusion frequency (CFFF) reflecting/requiring visual integration, visuo-motor skil...

주제어

참고문헌 (67)

  1. Ansari R. R. Manuel F. K. Suh K. I. King J. F. Messer R. K. Moret F. ( 2003 ). Choroidal blood flow measurements in zero gravity (space-like) environment using laser-doppler flowmetry. Invest. Ophthalmol. Vis. Sci. 44 : 960 . 

  2. Ansari R. R. Sebag J. ( 2008 ). “Non-invasive monitoring of ocular health in space,” in Teleophtalmology , 2nd Edn, eds K. Yogesan S. Kumar L. Goldsschmidt J. Cuadros ( Berlin : Springer-Verlag ), 267 – 274 . 

  3. Balestra C. Lafere P. Germonpre P. ( 2012 ). Persistence of critical flicker fusion frequency impairment after a 33 mfw SCUBA dive: evidence of prolonged nitrogen narcosis? Eur. J. Appl. Physiol. 112 4063 – 4068 . 10.1007/s00421-012-2391-z 22476770 

  4. Bennett P. B. Cross A. V. C. ( 1960 ). Alterations in the fusion frequency of flicker correlated with electroncephalogram changes at increased partial pressures of nitrogen. J. Physiol. 111 28 – 29 . 

  5. Berka C. Levendowski D. J. Lumicao M. N. Yau A. Davis G. Zivkovic V. T. ( 2007 ). EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks. Aviat. Space Environ. Med. 78 B231 – B244 . 17547324 

  6. Biernacki M. P. Jankowski K. S. Kowalczuk K. Lewkowicz R. Deren M. ( 2012 ). + Gz centrifugation and mood. Aviat. Space Environ. Med. 83 136 – 139 . 10.3357/ASEM.3126.2012 22303593 

  7. Biernacki M. P. Lewkowicz R. Zielinski P. Wojtkowiak M. ( 2017 ). Coping and changes in arousal after exposure to + Gz load. Aerosp. Med. Hum. Perform. 88 1034 – 1039 . 10.3357/AMHP.4708.2017 29046179 

  8. Blomqvist C. G. Buckey J. C. Gaffney F. A. Lane L. D. Levine B. D. Watenpaugh D. E. ( 1994 ). Mechanisms of post-flight orthostatic intolerance. J. Gravit. Physiol. 1 122 – 124 . 

  9. Bobon D. P. Lecoq A. Von Frenckell R. Mormont I. Lavergne G. Lottin T. ( 1982 ). [Critical flicker fusion frequency in psychopathology and psychopharmacology. Review of the literature]. Acta Psychiatr. Belg. 82 7 – 112 . 6751024 

  10. Bock O. Abeele S. Eversheim U. ( 2003 ). Sensorimotor performance and computational demand during short-term exposure to microgravity. Aviat. Space Environ. Med. 74 1256 – 1262 . 14692468 

  11. Bock O. Weigelt C. Bloomberg J. J. ( 2010 ). Cognitive demand of human sensorimotor performance during an extended space mission: a dual-task study. Aviat. Space Environ. Med. 81 819 – 824 . 10.3357/ASEM.2608.2010 20824987 

  12. Carmel D. Lavie N. Rees G. ( 2006 ). Conscious awareness of flicker in humans involves frontal and parietal cortex. Curr. Biol. 16 907 – 911 . 10.1016/j.cub.2006.03.055 16682352 

  13. Cassady K. Koppelmans V. Reuter-Lorenz P. De Dios Y. Gadd N. Wood S. ( 2016 ). Effects of a spaceflight analog environment on brain connectivity and behavior. Neuroimage 141 18 – 30 . 10.1016/j.neuroimage.2016.07.029 27423254 

  14. Cheung B. Hofer K. ( 2003 ). Acceleration effects on pupil size with control of mental and environmental factors. Aviat. Space Environ. Med. 74 669 – 674 . 12793541 

  15. Collado A. Langlet C. Tzanova T. Hainaut J.-P. Monfort V. Bolmont B. ( 2017 ). Affective states and adaptation to parabolic flights. Acta Astronaut. 134 98 – 105 . 10.1016/j.actaastro.2017.01.043 

  16. Davranche K. Pichon A. ( 2005 ). Critical flicker frequency threshold increment after an exhausting exercice. J. Sport Exerc. Psychol. 27 515 – 520 . 10.1123/jsep.27.4.515 

  17. Eddy D. R. Schiflett S. G. Schlegel R. E. Shehab R. L. ( 1998 ). Cognitive performance aboard the life and microgravity spacelab. Acta Astronaut. 43 193 – 210 . 10.1016/S0094-5765(98)00154-4 11541924 

  18. Feshchenko V. A. Reinsel R. A. Veselis R. A. ( 1994 ). Optimized method of estimation of critical flicker frequency (CFF). Proc. Annu. Symp. Comput. Appl. Med. Care 1006. 7949848 

  19. Fuentes J. P. Villafaina S. Collado-Mateo D. De La Vega R. Gusi N. Clemente-Suarez V. J. ( 2018 ). Use of biotechnological devices in the quantification of psychophysiological workload of professional chess players. J. Med. Syst. 42 : 40 . 10.1007/s10916-018-0890-0 29350296 

  20. Germonpre P. Balestra C. Hemelryck W. Buzzacott P. Lafere P. ( 2017 ). Objective vs. subjective evaluation of cognitive performance during 0.4-MPa dives breathing air or nitrox. Aerosp. Med. Hum. Perform. 88 469 – 475 . 10.3357/AMHP.4608.2017 28417835 

  21. Golding J. F. Paillard A. C. Normand H. Besnard S. Denise P. ( 2017 ). Prevalence. Aerosp. Med. Hum. Perform. 88 3 – 9 . 10.3357/AMHP.4705.2017 28061915 

  22. Grocott M. P. ( 2013 ). Integrative physiology and systems biology: reductionism, emergence and causality. Extrem. Physiol. Med. 2 : 9 . 10.1186/2046-7648-2-9 23849742 

  23. Gunga H. C. Steinach M. Kirsch K. Steinach M. Wittmann K. ( 2009 ). “Space medicine and biology,” in Handbook of Space Technology , eds W. Ley K. Wittmann W. Hallmann ( Hoboken, NJ : Wiley and Sons ), 606 – 621 . 

  24. Gur R. C. Gur R. E. Skolnick B. E. Resnick S. M. Silver F. L. Chawluk J. ( 1988 ). Effects of task difficulty on regional cerebral blood flow: relationships with anxiety and performance. Psychophysiology 25 392 – 399 . 10.1111/j.1469-8986.1988.tb01874.x 3174905 

  25. Gutherie A. H. Hammond B. R. Jr. ( 2004 ). Critical flicker fusion frequency: relation to resting systolic blood pressure. Optom. Vis. Sci. 81 373 – 376 . 10.1097/01.opx.0000135084.16018.ac 15181363 

  26. Hecht S. Shlaer S. J. ( 1936 ). Intermittent stimulation by light: the relation between intensity and critical frequency for different part of the spectrum. Gen. Physiol. 19 965 – 977 . 10.1085/jgp.19.6.965 

  27. Hemelryck W. Rozloznik M. Germonpre P. Balestra C. Lafere P. ( 2013 ). Functional comparison between critical flicker fusion frequency and simple cognitive tests in subjects breathing air or oxygen in normobaria. Diving Hyperb. Med. 43 138 – 142 . 24122188 

  28. Jungling S. Bock O. Girgenrath M. ( 2002 ). Speed-accuracy trade-off of grasping movements during microgravity. Aviat. Space Environ. Med. 73 430 – 435 . 12014601 

  29. Kahlbrock N. Butz M. May E. S. Brenner M. Kircheis G. Haussinger D. ( 2012 ). Lowered frequency and impaired modulation of gamma band oscillations in a bimodal attention task are associated with reduced critical flicker frequency. Neuroimage 61 216 – 227 . 10.1016/j.neuroimage.2012.02.063 22405731 

  30. Karmali F. Shelhamer M. ( 2008 ). The dynamics of parabolic flight: flight characteristics and passenger percepts. Acta Astronaut. 63 594 – 602 . 10.1016/j.actaastro.2008.04.009 19727328 

  31. Kermorgant M. Leca F. Nasr N. Custaud M. A. Geeraerts T. Czosnyka M. ( 2017 ). Impacts of simulated weightlessness by dry immersion on optic nerve sheath diameter and cerebral autoregulation. Front. Physiol. 8 : 780 . 10.3389/fphys.2017.00780 29075198 

  32. Koppelmans V. Bloomberg J. J. Mulavara A. P. Seidler R. D. ( 2016 ). Brain structural plasticity with spaceflight. NPJ Microgravity 2 : 2 . 10.1038/s41526-016-0001-9 29214212 

  33. Lafere P. Balestra C. Hemelryck W. Guerrero F. Germonpre P. ( 2016 ). Do environmental conditions contribute to narcosis onset and symptom severity? Int. J. Sports Med. 37 1124 – 1128 . 27737486 

  34. Lafere P. Lavoute C. Hemelryck W. ( 2014 ). “Nitrogen Narcosis,” in The Science of Diving - Things Your Instructor Never Told You , eds C. Balestra P. Germonpre ( Saarbrücken : LAP Lambert Academic Publishing ), 183 – 197 . 

  35. Lawley J. S. Petersen L. G. Howden E. J. Sarma S. Cornwell W. K. Zhang R. ( 2017 ). Effect of gravity and microgravity on intracranial pressure. J. Physiol. 595 2115 – 2127 . 10.1113/JP273557 28092926 

  36. Luczak A. Sobolewski A. ( 2005 ). Longitudinal changes in critical flicker fusion frequency: an indicator of human workload. Ergonomics 48 1770 – 1792 . 10.1080/00140130500241753 16373316 

  37. Makowski A. L. Lindgren K. Locke J. P. ( 2011 ). Visual side effects of scopolamine/ dextroamphetamine among parabolic fliers. Aviat. Space Environ. Med. 82 683 – 688 . 10.3357/ASEM.2750.2011 21748905 

  38. Manzey D. Lorenz B. ( 1998 ). Mental performance during short-term and long-term spaceflight. Brain Res. Brain Res. Rev. 28 215 – 221 . 10.1016/S0165-0173(98)00041-1 9795225 

  39. Manzey D. Lorenz B. Poljakov V. ( 1998 ). Mental performance in extreme environments: results from a performance monitoring study during a 438-day spaceflight. Ergonomics 41 537 – 559 . 10.1080/001401398186991 9557591 

  40. Marusic U. Meeusen R. Pisot R. Kavcic V. ( 2014 ). The brain in micro- and hypergravity: the effects of changing gravity on the brain electrocortical activity. Eur. J. Sport Sci. 14 813 – 822 . 10.1080/17461391.2014.908959 24734884 

  41. McKendrick A. M. ( 2005 ). Recent developments in perimetry: test stimuli and procedures. Clin. Exp. Optom. 88 73 – 80 . 10.1111/j.1444-0938.2005.tb06671.x 15807638 

  42. Migeotte P. F. Dominique T. Sa R. C. ( 2002 ). Dynamics of blood pressure, pulse wave transit time and systolic time intervals during acute gravity changes induced by parabolic flight. J. Gravit. Physiol. 9 77 – 78 . 14977001 

  43. Montag C. Zander T. Schneider S. ( 2016 ). Who dares to join a parabolic flight? Acta Astronaut. 129 223 – 228 . 10.1016/j.actaastro.2016.09.015 

  44. Negishi K. Borowski A. G. Popovic Z. B. Greenberg N. L. Martin D. S. Bungo M. W. ( 2017 ). Effect of gravitational gradients on cardiac filling and performance. J. Am. Soc. Echocardiogr. 30 1180 – 1188 . 10.1016/j.echo.2017.08.005 29056408 

  45. O’Neal M. R. Task H. L. Genco L. V. ( 1992 ). Effect of Microgravity on Several Visual Functions During sts Shuttle Missions. Available: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19920013088.pdf [accessed July 15 2018]. 

  46. Palkovits S. Lasta M. Told R. Schmidl D. Werkmeister R. Cherecheanu A. P. ( 2015 ). Relation of retinal blood flow and retinal oxygen extraction during stimulation with diffuse luminance flicker. Sci. Rep. 5 : 18291 . 10.1038/srep18291 26672758 

  47. Petrak J. Mravec B. Jurani M. Baranovska M. Tillinger A. Hapala I. ( 2008 ). Hypergravity-induced increase in plasma catecholamine and corticosterone levels in telemetrically collected blood of rats during centrifugation. Ann. N. Y. Acad. Sci. 1148 201 – 208 . 10.1196/annals.1410.060 19120110 

  48. Pletser V. Rouquette S. Friedrich U. Clervoy J.-F. Gharib T. Gai F. ( 2015 ). European parabolic flight campaigns with Airbus ZERO-G: looking back at the A300 and looking forward to the A310. Adv. Space Res. 56 1003 – 1013 . 10.1016/j.asr.2015.05.022 

  49. Popova N. K. Kulikov A. V. Kondaurova E. M. Tsybko A. S. Kulikova E. A. Krasnov I. B. ( 2015 ). Risk neurogenes for long-term spaceflight: dopamine and serotonin brain system. Mol. Neurobiol. 51 1443 – 1451 . 10.1007/s12035-014-8821-7 25084757 

  50. Railton R. C. Foster T. M. Temple W. ( 2009 ). A comparison of two methods for assessing critical flicker fusion frequency in hens. Behav. Process. 80 196 – 200 . 10.1016/j.beproc.2008.11.016 19101613 

  51. Renner U. D. Oertel R. Kirch W. ( 2005 ). Pharmacokinetics and pharmacodynamics in clinical use of scopolamine. Ther. Drug Monit. 27 655 – 665 . 10.1097/01.ftd.0000168293.48226.57 16175141 

  52. Rostain J. C. Lavoute C. Risso J. J. Vallee N. Weiss M. ( 2011 ). A review of recent neurochemical data on inert gas narcosis. Undersea Hyperb. Med. 38 49 – 59 . 21384763 

  53. Rovamo J. Donner K. Nasanen R. Raninen A. ( 2000 ). Flicker sensitivity as a function of target area with and without temporal noise. Vision Res. 40 3841 – 3851 . 10.1016/S0042-6989(00)00181-4 11090676 

  54. Schmitt J. A. Riedel W. J. Vuurman E. F. Kruizinga M. Ramaekers J. G. ( 2002 ). Modulation of the critical flicker fusion effects of serotonin reuptake inhibitors by concomitant pupillary changes. Psychopharmacology 160 381 – 386 . 10.1007/s00213-001-0993-y 11919665 

  55. Schneider S. Askew C. D. Brummer V. Kleinert J. Guardiera S. Abel T. ( 2009 ). The effect of parabolic flight on perceived physical, motivational and psychological state in men and women: correlation with neuroendocrine stress parameters and electrocortical activity. Stress 12 336 – 349 . 10.1080/10253890802499175 19006009 

  56. Seki K. Hugon M. ( 1976 ). Critical flicker frequency (CFF) and subjective fatigue during an oxyhelium saturation dive at 62 ATA. Undersea Biomed. Res. 3 235 – 247 . 969026 

  57. Sharma P. Singh S. Sharma B. C. Kumar M. Garg H. Kumar A. ( 2011 ). Propofol sedation during endoscopy in patients with cirrhosis, and utility of psychometric tests and critical flicker frequency in assessment of recovery from sedation. Endoscopy 43 400 – 405 . 10.1055/s-0030-1256182 21547878 

  58. Sigaudo-Roussel D. Custaud M. A. Maillet A. Guell A. Kaspranski R. Hughson R. L. ( 2002 ). Heart rate variability after prolonged spaceflights. Eur. J. Appl. Physiol. 86 258 – 265 . 10.1007/s00421-001-0551-7 11990736 

  59. Strangman G. E. Sipes W. Beven G. ( 2014 ). Human cognitive performance in spaceflight and analogue environments. Aviat. Space Environ. Med. 85 1033 – 1048 . 10.3357/ASEM.3961.2014 25245904 

  60. Strewe C. Feuerecker M. Nichiporuk I. Kaufmann I. Hauer D. Morukov B. ( 2012 ). Effects of parabolic flight and spaceflight on the endocannabinoid system in humans. Rev. Neurosci. 23 673 – 680 . 10.1515/revneuro-2012-0057 23023882 

  61. Taibbi G. Cromwell R. L. Kapoor K. G. Godley B. F. Vizzeri G. ( 2013 ). The effect of microgravity on ocular structures and visual function: a review. Surv. Ophthalmol. 58 155 – 163 . 10.1016/j.survophthal.2012.04.002 23369516 

  62. Taibi A. Gadda G. Gambaccini M. Menegatti E. Sisini F. Zamboni P. ( 2017 ). Investigation of cerebral venous outflow in microgravity. Physiol. Meas. 38 1939 – 1952 . 10.1088/1361-6579/aa8980 28857747 

  63. Truszczynski O. Wojtkowiak M. Biernacki M. Kowalczuk K. ( 2009 ). The effect of hypoxia on the critical flicker fusion threshold in pilots. Int. J. Occup. Med. Environ. Health 22 13 – 18 . 10.2478/v10001-009-0002-y 19342364 

  64. Wang Y. Iqbal J. Liu Y. Su R. Lu S. Peng G. ( 2015 ). Effects of simulated microgravity on the expression of presynaptic proteins distorting the GABA/glutamate equilibrium–A proteomics approach. Proteomics 15 3883 – 3891 . 10.1002/pmic.201500302 26359799 

  65. Wang Y. Javed I. Liu Y. Lu S. Peng G. Zhang Y. ( 2016 ). Effect of prolonged simulated microgravity on metabolic proteins in rat hippocampus: steps toward safe space travel. J. Proteome Res. 15 29 – 37 . 10.1021/acs.jproteome.5b00777 26523826 

  66. White O. Clément G. Fortrat J. O. Pavy-LeTraon A. Thonnard J. L. Blanc S. ( 2016 ). Towards human exploration of space: the THESEUS review series on neurophysiology research priorities. NPJ Microgravity 2 : 16023 . 10.1038/npjmgrav.2016.23 28725734 

  67. Yildiz A. Quetscher C. Dharmadhikari S. Chmielewski W. Glaubitz B. Schmidt-Wilcke T. ( 2014 ). Feeling safe in the plane: neural mechanisms underlying superior action control in airplane pilot trainees–a combined EEG/MRS study. Hum. Brain Mapp. 35 5040 – 5051 . 10.1002/hbm.22530 24753040 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로