$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Highly tumor-specific DNA nanostructures discovered by in vivo screening of a nucleic acid cage library and their applications in tumor-targeted drug delivery

Biomaterials, v.195, 2019년, pp.1 - 12  

Kim, Kyoung-Ran (Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST)) ,  Kang, Seong Jae (Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST)) ,  Lee, A-Young (Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST)) ,  Hwang, Dohyeon (Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST)) ,  Park, Miri (Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST)) ,  Park, Haedong (Center for Computational Science, Korea Institute of Science and Technology (KIST)) ,  Kim, Sanghee (College of Pharmacy Seoul National University) ,  Hur, Kahyun (Center for Computational Science, Korea Institute of Science and Technology (KIST)) ,  Chung, Hak Suk (Cent) ,  Mao, Chengde ,  Ahn, Dae-Ro

Abstract AI-Helper 아이콘AI-Helper

Abstract Enormous efforts have been made to harness nanoparticles showing extravasation around tumors for tumor-targeted drug carriers. Owing to the complexity of in vivo environments, however, it is very difficult to rationally design a nanoconstruct showing high tumor specificity. Here, we show a...

참고문헌 (46)

  1. Cancer Res. Matsumura 46 6387 1986 New concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs 

  2. Microcirculation Maeda 23 173 2016 10.1111/micc.12228 A retrospective 30 years after discovery of the enhanced permeability and retention effect of solid tumors: next-generation chemotherapeutics and photodynamic therapy-problems, solutions, and prospects 

  3. J. Control. Release. Maeda 1 271 2000 10.1016/S0168-3659(99)00248-5 Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review 

  4. J. Control Release Nichols 28 451 2014 10.1016/j.jconrel.2014.03.057 EPR: Evidence and fallacy 

  5. Nat. Rev. Mater. Wilhelm 63 16014 2016 10.1038/natrevmats.2016.14 Analysis of nanoparticle delivery to tumours 

  6. Deepak 142 2007 Nanoparticulate drug delivery systems 

  7. Adv. Drug Deliv. Rev. Venkataraman 63 1228 2011 10.1016/j.addr.2011.06.016 The effect of polymeric nanostructure shape on drug delivery 

  8. Nano Lett. Chithrani 6 662 2006 10.1021/nl052396o Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells 

  9. Nano Lett. Dasgupta 14 687 2014 10.1021/nl403949h Shape and orientation matter for the cellular uptake of nonspherical particles 

  10. Nat. Rev. Mater. Chen 2 17924 2017 10.1038/natrevmats.2017.24 Rethinking cancer nanotheranostics 

  11. Proc. Natl. Acad. Sci. USA Agarwal 110 17247 2013 10.1073/pnas.1305000110 Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms 

  12. Curr. Drug. Discov. Technol. Gong 14 216 2017 10.2174/1570163814666170425155154 Compound libraries: recent advances and their applications in drug discovery 

  13. Br. J. Pharmacol. Hughes 162 1239 2011 10.1111/j.1476-5381.2010.01127.x Principles of early drug discovery 

  14. ACS Nano Wang 11 12641 2017 10.1021/acsnano.7b07093 Predicting nano-bio interactions by integrating nanoparticle libraries and quantitative nanostructure activity relationship modeling 

  15. Mol. Ther. Jasinski 26 784 2018 10.1016/j.ymthe.2017.12.018 The effect of size and shape of RNA nanoparticles on biodistribution 

  16. Science Goodman 310 1661 2005 10.1126/science.1120367 Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication 

  17. Nature He 452 198 2008 10.1038/nature06597 Hierarchical self-assembly of DNA into symmetric supramolecular polyhedral 

  18. Angew. Chem. Int. Ed. Engl. Bhatia 48 4134 2009 10.1002/anie.200806000 Icosahedral DNA nanocapsules by modular assembly 

  19. Chem. Commun. McLaughlin 17 1107 2016 A facile, modular and high yield method to assemble three-dimensional DNA structures 

  20. Nature Nanotechnol. Afonin 5 676 2010 10.1038/nnano.2010.160 In vitro assembly of cubic RNA-based scaffolds designed in silico 

  21. Nature Chen 350 613 1991 10.1038/350631a0 Synthesis from DNA of a molecule with the connectivity of a cube 

  22. ChemBioChem Taylor 17 1107 2016 10.1002/cbic.201600136 Nanostructures from synthetic genetic polymers 

  23. Chem. Sci. Kim 5 1533 2014 10.1039/C3SC52601A Utilizing the bioorthogonal base-pairing system of L-DNA to design ideal DNA nanocarriers for enhanced delivery of nucleic acid cargos 

  24. Chem. Commun. Kim 49 2010 2013 10.1039/c3cc38693g Drug delivery by a self-assembled DNA tetrahedron for overcoming drug resistance in breast cancer cells 

  25. J. Control. Release Kim 243 121 2016 10.1016/j.jconrel.2016.10.015 Self-assembled mirror DNA nanostructures for tumor-specific delivery of anticancer drugs 

  26. ACS Nano Li 5 8783 2011 10.1021/nn202774x Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides 

  27. Nat. Nanotechnol. Lee 7 389 2012 10.1038/nnano.2012.73 Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery 

  28. Small Keum 7 3529 2011 10.1002/smll.201101804 Design, assembly, and activity of antisense DNA nanostructures 

  29. ACS Nano Walsh 5 5427 2011 10.1021/nn2005574 DNA cage delivery to mammalian cells 

  30. Biomaterials Huang 103 183 2016 10.1016/j.biomaterials.2016.06.053 A multifunctional DNA origami as carrier of metal complexes to achieve enhanced tumoral delivery and nullified systemic toxicity 

  31. Nat. Protoc. Afonin 6 2022 2011 10.1038/nprot.2011.418 Design and self-assembly of siRNA-functionalized RNA nanoparticles for use in automated nanomedicine 

  32. J. Comput. Chem. Van Der Spoel 26 1701 2005 10.1002/jcc.20291 GROMACS: fast, flexible, and free 

  33. J. Chem. Theory Comput. Hart 8 348 2012 10.1021/ct200723y Optimization of the CHARMM additive force field for DNA: improved treatment of the BI/BII conformational equilibrium 

  34. J. Chem. Theory Comput. Best 8 3257 2012 10.1021/ct300400x Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi1 and chi2 dihedral angles 

  35. J. Chem. Phys. Jorgensen 79 926 1983 10.1063/1.445869 Comparison of simple potential functions for simulating liquid water 

  36. J. Chem. Phy. Berendsen 81 3684 1984 10.1063/1.448118 Molecular-dynamics with coupling to an external bath 

  37. J. Appl. Phy. Parrinello 52 7182 1981 10.1063/1.328693 Polymorphic transitions in single crystals: a new molecular dynamics method 

  38. Phys. Rev. Verlet 159 98 1967 10.1103/PhysRev.159.98 Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard -Jones Molecules 

  39. J. Biol. Chem. Zhou 272 7797 1997 10.1074/jbc.272.12.7797 Target protease specificity of the viral serpin CrmA. Analysis of five caspases 

  40. Protein Expr. Purif Hwang 126 104 2016 10.1016/j.pep.2016.06.004 A facile method to prepare large quantities of active caspase-3 overexpressed by auto-induction in the C41(DE3) strain 

  41. J. Control. Release. Kim 280 1 2018 10.1016/j.jconrel.2018.04.051 Streptavidin-mirror DNA tetrahedron hybrid as a platform for intracellular and tumor delivery of enzymes 

  42. Nucleic Acids Res Andersen 36 1113 2008 10.1093/nar/gkm1124 Assembly and structural analysis of a covalently closed nano-scale DNA cage 

  43. Proc. Natl. Acad. Sci. USA Choi 110 7625 2013 10.1073/pnas.1305804110 Mechanism for the endocytosis of spherical nucleic acid nanoparticle conjugates 

  44. Small Narayan 11 4173 2015 10.1002/smll.201500027 The sequence-specific cellular uptake of spherical nucleic acid nanoparticle conjugates 

  45. Biomater. Sci. Song 5 412 2017 10.1039/C6BM00792A Backbone-modified oligonucleotides for tuning the cellular uptake behaviour of spherical nucleic acids 

  46. J. Pharmacol. Exp. Ther. Wong 317 1372 2006 10.1124/jpet.106.101154 A mechanistic study of enhanced doxorubicin uptake and retention in multidrug resistant breast cancer cells using a polymer-lipid hybrid nanoparticle system 

LOADING...

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로