$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Preparation and optimization of poly (lactic acid) nanoparticles loaded with fisetin to improve anti-cancer therapy

International journal of biological macromolecules, v.125, 2019년, pp.700 - 710  

Feng, Chunlai (Corresponding authors.) ,  Yuan, Xianqin (Corresponding authors.) ,  Chu, Kexin ,  Zhang, Haisheng ,  Ji, Wei ,  Rui, Mengjie

Abstract AI-Helper 아이콘AI-Helper

Abstract Fisetin is a natural flavonoid with promising antitumor activity, whereas its clinical application is limited by its hydrophobic property. In this study, we aimed to load fisetin into poly(lactic acid) (PLA) nanoparticles to increase fisetin's solubility and therapeutic efficacy. Based on ...

주제어

참고문헌 (69)

  1. CA Cancer J. Clin. Siegel 67 1 7 2017 10.3322/caac.21387 Cancer statistics 

  2. CA Cancer J. Clin. Miller 66 4 271 2016 10.3322/caac.21349 Cancer treatment and survivorship statistics 

  3. Nat. Rev. Cancer van der Burg 16 4 219 2016 10.1038/nrc.2016.16 Vaccines for established cancer: overcoming the challenges posed by immune evasion 

  4. Nat. Rev. Drug Discov. Mahoney 14 8 561 2015 10.1038/nrd4591 Combination cancer immunotherapy and new immunomodulatory targets 

  5. Cell Goldberg 161 2 201 2015 10.1016/j.cell.2015.03.037 Immunoengineering: how nanotechnology can enhance cancer immunotherapy 

  6. Nature Naldini 526 7573 351 2015 10.1038/nature15818 Gene therapy returns to centre stage 

  7. CA Cancer J. Clin. Berindan-Neagoe 64 5 311 2014 10.3322/caac.21244 MicroRNAome genome: a treasure for cancer diagnosis and therapy 

  8. FEBS Lett. Sengupta 570 1-3 77 2004 10.1016/j.febslet.2004.06.027 Investigations on the binding and antioxidant properties of the plant flavonoid fisetin in model biomembranes 

  9. Antioxid. Redox Signal. Khan 19 2 151 2013 10.1089/ars.2012.4901 Fisetin: a dietary antioxidant for health promotion 

  10. Pharmacol. Res. Park 55 1 31 2007 10.1016/j.phrs.2006.10.002 Anti-inflammatory activity of fisetin in human mast cells (HMC-1) 

  11. Int. Immunopharmacol. Lee 9 3 268 2009 10.1016/j.intimp.2008.11.005 Flavonol-rich RVHxR from Rhus verniciflua Stokes and its major compound fisetin inhibits inflammation-related cytokines and angiogenic factor in rheumatoid arthritic fibroblast-like synovial cells and in vivo models 

  12. Int. Immunopharmacol. Funakoshi-Tago 11 9 1150 2011 10.1016/j.intimp.2011.03.012 Anti-inflammatory activity of structurally related flavonoids, apigenin, luteolin and fisetin 

  13. Cancer Chemother. Pharmacol. Touil 68 2 445 2011 10.1007/s00280-010-1505-8 Improved antiangiogenic and antitumour activity of the combination of the natural flavonoid fisetin and cyclophosphamide in Lewis lung carcinoma-bearing mice 

  14. Carcinogenesis Bhat 33 2 385 2012 10.1093/carcin/bgr282 Fisetin inhibits various attributes of angiogenesis in vitro and in vivo-implications for angioprevention 

  15. J. Invest. Dermatol. Syed 131 6 1291 2011 10.1038/jid.2011.6 Inhibition of human melanoma cell growth by the dietary flavonoid fisetin is associated with disruption of Wnt/beta-catenin signaling and decreased Mitf levels 

  16. Cancer Lett. Khan 359 2 155 2015 10.1016/j.canlet.2015.01.038 Dietary agents for prevention and treatment of lung cancer 

  17. Biochem. Pharmacol. Adhami 84 10 1277 2012 10.1016/j.bcp.2012.07.012 Dietary flavonoid fisetin: a novel dual inhibitor of PI3K/Akt and mTOR for prostate cancer management 

  18. Proc. Natl. Acad. Sci. U. S. A. Maher 103 44 16568 2006 10.1073/pnas.0607822103 Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory 

  19. J. Agric. Food Chem. Liao 57 19 8933 2009 10.1021/jf902630w Involvement of the ERK signaling pathway in fisetin reduces invasion and migration in the human lung cancer cell line A549 

  20. Mutat. Res. Genet. Toxicol. Environ. Olaharski 582 1-2 79 2005 10.1016/j.mrgentox.2005.01.002 Chromosomal malsegregation and micronucleus induction in vitro by the DNA topoisomerase II inhibitor fisetin 

  21. Mol. Cell. Biochem. Chien 333 1-2 169 2010 10.1007/s11010-009-0217-z Antimetastatic potential of fisetin involves inactivation of the PI3K/Akt and JNK signaling pathways with downregulation of MMP-2/9 expressions in prostate cancer PC-3 cells 

  22. PLoS One Pal 9 1 2014 10.1371/journal.pone.0086338 Fisetin inhibits human melanoma cell invasion through promotion of mesenchymal to epithelial transition and by targeting MAPK and NF kappa B signaling pathways 

  23. Carcinogenesis Suh 30 2 300 2009 10.1093/carcin/bgn269 A plant flavonoid fisetin induces apoptosis in colon cancer cells by inhibition of COX2 and Wnt/EGFR/NF-kappa B-signaling pathways 

  24. Int. J. Pharm. Ragelle 427 2 452 2012 10.1016/j.ijpharm.2012.02.025 Nanoemulsion formulation of fisetin improves bioavailability and antitumour activity in mice 

  25. Artif. cells, nanomedicine, and biotechnol. Pawar 1 2018 Development of fisetin-loaded folate functionalized pluronic micelles for breast cancer targeting 

  26. Int. J. Pharm. Seguin 444 1-2 146 2013 10.1016/j.ijpharm.2013.01.050 Liposomal encapsulation of the natural flavonoid fisetin improves bioavailability and antitumor efficacy 

  27. AAPS PharmSciTech Martin 3 3 16 2002 10.1208/pt030318 Preparation of budesonide and budesonide-PLA microparticles using supercritical fluid precipitation technology 

  28. Int. J. Pharm. Wacker 457 1 50 2013 10.1016/j.ijpharm.2013.08.079 Nanocarriers for intravenous injection-the long hard road to the market 

  29. Adv. Drug Deliv. Rev. James 107 277 2016 10.1016/j.addr.2016.06.009 Poly(lactic acid) for delivery of bioactive macromolecules 

  30. Acta Biomater. Peres 48 41 2017 10.1016/j.actbio.2016.11.012 Poly(lactic acid)-based particulate systems are promising tools for immune modulation 

  31. AAPS PharmSciTech Goudarzi 19 4 1554 2018 10.1208/s12249-018-0969-4 In vitro characterization and evaluation of the cytotoxicity effects of nisin and nisin-loaded PLA-PEG-PLA nanoparticles on gastrointestinal (AGS and KYSE-30), hepatic (HepG2) and blood (K562) cancer cell lines 

  32. Adv. Drug Deliv. Rev. Fang 63 3 136 2011 10.1016/j.addr.2010.04.009 The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect 

  33. J. Pharm. Sci. Natfji 106 11 3179 2017 10.1016/j.xphs.2017.06.019 Parameters affecting the enhanced permeability and retention effect: the need for patient selection 

  34. J. Appl. Polym. Sci. Hong 135 18 2018 10.1002/app.46199 Fabrication of poly(lactic acid) nano- and microparticles using a nanomixer via nanoprecipitation or emulsion diffusion 

  35. J. Control. Release Naahidi 166 2 182 2013 10.1016/j.jconrel.2012.12.013 Biocompatibility of engineered nanoparticles for drug delivery 

  36. Compr. Rev. Food Sci. F Jamshidian 9 5 552 2010 10.1111/j.1541-4337.2010.00126.x Poly-lactic acid: production, applications, nanocomposites, and release studies 

  37. Pharm. Res. Wang 34 2 453 2017 10.1007/s11095-016-2077-z Bioflavonoid fisetin loaded alpha-tocopherol-poly(lactic acid)-based polymeric micelles for enhanced anticancer efficacy in breast cancers 

  38. Int. J. Pharm. Murakami 187 2 143 1999 10.1016/S0378-5173(99)00187-8 Preparation of poly (dl-lactide-co-glycolide) nanoparticles by modified spontaneous emulsification solvent diffusion method 

  39. J. Control. Release Lamprecht 71 3 297 2001 10.1016/S0168-3659(01)00230-9 Design of rolipram-loaded nanoparticles: comparison of two preparation methods 

  40. J. Pharm. Sci. Ibrahim 105 12 3691 2016 10.1016/j.xphs.2016.09.019 Stability and ocular pharmacokinetics of celecoxib-loaded nanoparticles topical ophthalmic formulations 

  41. Int. J. Pharm. Budhian 336 2 367 2007 10.1016/j.ijpharm.2006.11.061 Haloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug content 

  42. Int. J. Pharm. Van de Ven 420 1 122 2011 10.1016/j.ijpharm.2011.08.016 PLGA nanoparticles loaded with the antileishmanial saponin β-aescin: factor influence study and in vitro efficacy evaluation 

  43. Sci. Pharm. Rachmawati 84 1 191 2016 10.3797/scipharm.ISP.2015.10 Curcumin-loaded PLA nanoparticles: formulation and physical evaluation 

  44. J. Pharm. Sci. Muheem 106 10 3050 2017 10.1016/j.xphs.2017.05.026 A combinatorial statistical design approach to optimize the nanostructured cubosomal carrier system for oral delivery of ubidecarenone for management of doxorubicin-induced cardiotoxicity: in vitro-in vivo investigations 

  45. AAPS PharmSciTech Varshosaz 10 1 158 2009 10.1208/s12249-009-9191-8 Applying the Taguchi design for optimized formulation of sustained release gliclazide chitosan beads: an in vitro/in vivo study 

  46. AAPS PharmSciTech Zhao 18 5 1475 2017 10.1208/s12249-016-0637-5 Formulation, optimization, characterization, and pharmacokinetics of progesterone intravenous lipid emulsion for traumatic brain injury therapy 

  47. Pharm. Res. Vauthier 26 5 1025 2009 10.1007/s11095-008-9800-3 Methods for the preparation and manufacture of polymeric nanoparticles 

  48. Int. J. Biol. Macromol. Pandey 75 521 2015 10.1016/j.ijbiomac.2015.02.011 Anti-cancer evaluation of quercetin embedded PLA nanoparticles synthesized by emulsified nanoprecipitation 

  49. Food Chem. Fernandez 207 75 2016 10.1016/j.foodchem.2016.03.083 Factorial design optimization and characterization of poly-lactic acid (PLA) nanoparticle formation for the delivery of grape extracts 

  50. Adv. Drug Deliv. Rev. Wu 63 6 456 2011 10.1016/j.addr.2011.02.001 Physical and chemical stability of drug nanoparticles 

  51. Int. J. Pharm. Mainardes 290 1 137 2005 10.1016/j.ijpharm.2004.11.027 PLGA nanoparticles containing praziquantel: effect of formulation variables on size distribution 

  52. Langmuir Desgouilles 19 22 9504 2003 10.1021/la034999q The design of nanoparticles obtained by solvent evaporation: a comprehensive study 

  53. Eur. J. Pharm. Biopharm. Song 69 2 445 2008 10.1016/j.ejpb.2008.01.013 Dual agents loaded PLGA nanoparticles: systematic study of particle size and drug entrapment efficiency 

  54. Adv. Drug Deliv. Rev. Danquah 63 8 623 2011 10.1016/j.addr.2010.11.005 Extravasation of polymeric nanomedicines across tumor vasculature 

  55. Adv. Drug Deliv. Rev. Torchilin 63 3 131 2011 10.1016/j.addr.2010.03.011 Tumor delivery of macromolecular drugs based on the EPR effect 

  56. Adv. Drug Deliv. Rev. Maeda 91 3 2015 10.1016/j.addr.2015.01.002 Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity 

  57. J. Phys. Chem. A Guzzo 110 36 10545 2006 10.1021/jp0613337 Study of the complexation of fisetin with cyclodextrins 

  58. Int. J. Pharm. Mignet 423 1 69 2012 10.1016/j.ijpharm.2011.04.066 Development of a liposomal formulation of the natural flavonoid fisetin 

  59. ACS Appl. Mater. Interfaces Chen 7 1 534 2015 10.1021/am5066893 Polymeric micelles encapsulating fisetin improve the therapeutic effect in colon cancer 

  60. Mat. Sci. Eng. C.-Mater. Sechi 68 594 2016 10.1016/j.msec.2016.06.042 Nanoencapsulation of dietary flavonoid fisetin: formulation and in vitro antioxidant and alpha-glucosidase inhibition activities 

  61. Carbohydr. Polym. Jeong 97 1 196 2013 10.1016/j.carbpol.2013.04.066 Complexation of fisetin with novel cyclosophoroase dimer to improve solubility and bioavailability 

  62. CrystEngComm Sowa 16 46 10592 2014 10.1039/C4CE01713G Improving solubility of fisetin by cocrystallization 

  63. Microcirculation (New York, N.Y. 1994) Maeda 23 3 173 2016 10.1111/micc.12228 30 years after discovery of the enhanced permeability and retention effect of solid tumors: next-generation chemotherapeutics and photodynamic therapy-problems, solutions, and prospects 

  64. J. Control. Release Zhang 240 489 2016 10.1016/j.jconrel.2016.06.012 Nanomedicine of synergistic drug combinations for cancer therapy - strategies and perspectives 

  65. Exp. Mol. Pathol. Singh 86 3 215 2009 10.1016/j.yexmp.2008.12.004 Nanoparticle-based targeted drug delivery 

  66. Medicine Galati 37 3 287 2004 Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties 

  67. Nat. Biotechnol. Blanco 33 9 941 2015 10.1038/nbt.3330 Principles of nanoparticle design for overcoming biological barriers to drug delivery 

  68. J. Control. Release Du 219 205 2015 10.1016/j.jconrel.2015.08.050 Stimuli-responsive nanoparticles for targeting the tumor microenvironment 

  69. Theranostics Chen 7 3 538 2017 10.7150/thno.16684 Current multistage drug delivery systems based on the tumor microenvironment 

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로