$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Bio-Inspired Fluorine-Free Self-Cleaning Polymer Coatings 원문보기

Coatings, v.8 no.12, 2018년, pp.436 -   

Wasser, Lionel (Laboratory for Processing of Advanced Composites (LPAC), Ecole Polytechnique Fé) ,  Dalle Vacche, Sara (dé) ,  Karasu, Feyza (rale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland) ,  Müller, Luca (Laboratory for Processing of Advanced Composites (LPAC), Ecole Polytechnique Fé) ,  Castellino, Micaela (dé) ,  Vitale, Alessandra (rale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland) ,  Bongiovanni, Roberta (Laboratory for Processing of Advanced Composites (LPAC), Ecole Polytechnique Fé) ,  Leterrier, Yves (dé)

Abstract AI-Helper 아이콘AI-Helper

Bio-inspired fluorine-free and self-cleaning polymer coatings were developed using a combination of self-assembly and UV-printing processes. Nasturtium and lotus leaves were selected as natural template surfaces. A UV-curable acrylate oligomer and three acrylated siloxane comonomers with different m...

참고문헌 (37)

  1. Shirtcliffe Dual-scale roughness produces unusually water-repellent surfaces Adv. Mater. 2004 10.1002/adma.200400315 16 1929 

  2. Bhushan Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction Prog. Mater. Sci. 2011 10.1016/j.pmatsci.2010.04.003 56 1 

  3. Wong Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity Nature 2011 10.1038/nature10447 477 443 

  4. Roach Progress in superhydrophobic surface development Soft Matter 2008 10.1039/B712575P 4 224 

  5. Ming Superhydrophobic films from raspberry-like particles Nano Lett. 2005 10.1021/nl0517363 5 2298 

  6. Budunoglu Highly transparent, flexible, and thermally stable superhydrophobic ORMOSIL aerogel thin films ACS Appl. Mater. Interfaces 2011 10.1021/am101116b 3 539 

  7. Mates Environmentally-safe and transparent superhydrophobic coatings Green Chem. 2016 10.1039/C5GC02725J 18 2185 

  8. Schutzius Water-Based, Nonfluorinated dispersions for environmentally benign, large-area, superhydrophobic coatings ACS Appl. Mater. Interfaces 2013 10.1021/am4043307 5 13419 

  9. Olin Development of a semicontinuous spray process for the production of superhydrophobic coatings from supercritical carbon dioxide solutions Ind. Eng. Chem. Res. 2015 10.1021/ie503798k 54 1059 

  10. Smith Droplet mobility on lubricant-impregnated surfaces Soft Matter 2013 10.1039/C2SM27032C 9 1772 

  11. Schlaich Fluorine-free superwetting systems: Construction of environmentally friendly superhydrophilic, superhydrophobic, and slippery surfaces on various substrates Polym. Chem. 2016 10.1039/C6PY01596D 7 7446 

  12. Torstensson Monomeric surfactants for surface modification of polymers Macromolecules 1990 10.1021/ma00203a022 23 126 

  13. Bongiovanni Modification of surface properties of UV-cured films in the presence of long chain acrylic monomers J. Colloid Interface Sci. 1995 10.1006/jcis.1995.1182 171 283 

  14. Clough Surface segregation of fluorine-ended monomers J. Colloid Interface Sci. 1996 10.1006/jcis.1996.0495 182 511 

  15. Bongiovanni Nanostructured hybrid networks based on highly fluorinated acrylates J. Sol-Gel Sci. Technol. 2009 10.1007/s10971-009-2027-x 52 291 

  16. Sangermano Hybrid organic/inorganic UV-cured acrylic films with hydrophobic surface properties Macromol. Mater. Eng. 2009 10.1002/mame.200900097 294 525 

  17. 10.3390/ma9090738 González Lazo, A.M., Katrantzis, I., Dalle Vacche, S., Karasu, F., and Leterrier, Y. (2016). A Facile in situ and UV printing process for bioinspired self-cleaning surfaces. Materials, 9. 

  18. Koch Chemistry and crystal growth of plant wax tubules of lotus (nelumbo nucifera) and nasturtium (tropaeolum majus) leaves on technical substrates Cryst. Growth Des. 2006 10.1021/cg060035w 6 2571 

  19. Neinhuis Characterization and distribution of water-repellent, self-cleaning plant surfaces Ann. Bot. 1997 10.1006/anbo.1997.0400 79 667 

  20. Schmidt Time-intensity transformation and internal stress in UV-curable hyperbranched acrylates Rheol. Acta 2007 10.1007/s00397-006-0163-6 46 693 

  21. Schmidt Acrylated hyperbranched polymer photoresist for ultra-thick and low-stress high aspect ratio micropatterns J. Micromech. Microeng. 2008 10.1088/0960-1317/18/4/045022 18 045022 

  22. Geiser Nanoimprint lithography with UV-curable hyperbranched polymer nanocomposites Macromol. Symp. 2010 10.1002/masy.201051022 296 144 

  23. Geiser Low-stress hyperbranched polymer/silica nanostructures produced by uv-curing, sol-gel processing and nanoimprint lithography Macromol. Mater. Eng. 2012 10.1002/mame.201100108 297 155 

  24. Cheng Synthesis and properties of photopolymerizable bifunctional polyether-modified polysiloxane polyurethane acrylate prepolymer J. Adhes. Sci. Technol. 2016 10.1080/01694243.2015.1087255 30 2 

  25. Bhushan Biomimetics: Lessons from nature-An overview Philos. Trans. Royal Soc. A Math. Phys. Eng. Sci. 2009 367 1445 

  26. Sharma Biomimicked superhydrophobic polymeric and carbon surfaces Ind. Eng. Chem. Res. 2011 10.1021/ie200369r 50 13012 

  27. Sun Artificial lotus leaf by nanocasting Langmuir 2005 10.1021/la050316q 21 8978 

  28. Lee Effects of intrinsic hydrophobicity on wettability of polymer replicas of a superhydrophobic lotus leaf J. Micromech. Microeng. 2007 10.1088/0960-1317/17/4/003 17 687 

  29. Vitale Photopolymerization of a perfluoropolyether oligomer and photolithographic processes for the fabrication of microfluidic devices Eur. Polym. J. 2012 10.1016/j.eurpolymj.2012.03.016 48 1118 

  30. Nakajima Design of hydrophobic surfaces for liquid droplet control NPG Asia Mater. 2011 10.1038/asiamat.2011.55 3 49 

  31. Mikhaylova Temperature-dependent FTIR spectroscopic and thermoanalytic studies of hydrogen bonding of hydroxyl (phenolic group) terminated hyperbranched aromatic polyesters J. Mol. Struct. 2006 10.1016/j.molstruc.2005.11.020 788 80 

  32. Bongiovanni New perfluoropolyether urethane methacrylates as surface modifiers: Effect of molecular weight and end group structure React. Funct. Polym. 2008 10.1016/j.reactfunctpolym.2007.09.009 68 189 

  33. Lee Solvent Compatibility of poly(dimethylsiloxane)-based microfluidic devices Anal. Chem. 2003 10.1021/ac0346712 75 6544 

  34. Vitale Compositional gradients in siloxane copolymers by photocontrolled surface segregation Macromolecules 2018 10.1021/acs.macromol.8b00339 51 4023 

  35. Sacco Electrodes/electrolyte interfaces in the presence of a surface-modified photopolymer electrolyte: Application in dye-sensitized solar cells ChemPhysChem 2015 10.1002/cphc.201402891 16 960 

  36. Richard Contact time of a bouncing drop Nature 2002 10.1038/417811a 417 811 

  37. Cassie Wettability of porous surfaces Trans. Faraday Soc. 1944 10.1039/tf9444000546 40 546 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로