$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] In Situ Regeneration of Alumina-Supported Cobalt-Iron Catalysts for Hydrogen Production by Catalytic Methane Decomposition 원문보기

Catalysts, v.8 no.11, 2018년, pp.567 -   

Fakeeha, Anis H. (Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia) ,  Barama, Siham (Laboratoire Maté) ,  Ibrahim, Ahmed A. (riaux Catalytiques et Catalyseen Chimie Organique (LMCCCO), USTHB BP.32 El Alia, Bab Ezzouar, Algiers 16111, Algeria) ,  Al-Otaibi, Raja-Lafi (Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia) ,  Barama, Akila (King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11421, Saudi Arabia) ,  Abasaeed, Ahmed E. (Laboratoire Maté) ,  Al-Fatesh, Ahmed S. (riaux Catalytiques et Catalyseen Chimie Organique (LMCCCO), USTHB BP.32 El Alia, Bab Ezzouar, Algiers 16111, Algeria)

Abstract AI-Helper 아이콘AI-Helper

A novel approach to the in situ regeneration of a spent alumina-supported cobalt-iron catalyst for catalytic methane decomposition is reported in this work. The spent catalyst was obtained after testing fresh catalyst in catalytic methane decomposition reaction during 90 min. The regeneration evalua...

참고문헌 (54)

  1. Dodds Hydrogen and fuel cell technologies for heating: A review Int. J. Hydrog. Energy 2015 10.1016/j.ijhydene.2014.11.059 40 2065 

  2. Deng Facile synthesis of carbon-coated hematite nanostructures for solar water splitting Energy Environ. Sci. 2013 10.1039/c3ee00066d 6 1965 

  3. Lima Steam reforming, partial oxidation, and oxidative steam reforming of ethanol over Pt/CeZrO2 catalyst J. Catal. 2008 10.1016/j.jcat.2008.05.017 257 356 

  4. Siriwardane Production of pure hydrogen and synthesis gas with Cu-Fe oxygen carriers using combined processes of chemical looping combustion and methane decomposition/reforming Int. J. Hydrog. Energy 2015 10.1016/j.ijhydene.2014.11.090 40 1698 

  5. 10.3390/catal8060229 Al-Fatesh, S.A., Ibrahim, A.A., Abu-Dahrieh, J.K., Al-Awadi, A.S., El-Toni, A.M., Fakeeha, A.H., and Abasaeed, A.E. (2018). Gallium-Promoted Ni Catalyst Supported on MCM-41 for Dry Reforming of Methane. Catalysts, 8. 

  6. Osman A highly active and synergistic Pt/Mo2C/Al2O3 catalyst for water-gas shift reaction Mol. Catal. 2018 10.1016/j.mcat.2018.05.025 455 38 

  7. Osman Enhanced catalytic activity of Ni on η-Al2O3 and ZSM-5 on addition of ceria zirconia for the partial oxidation of methane App. Catal. B Environ. 2017 10.1016/j.apcatb.2016.12.058 212 68 

  8. Politano Unveiling the Mechanisms Leading to H2 Production Promoted by Water Decomposition on Epitaxial Graphene at Room Temperature ACS Nano 2016 10.1021/acsnano.6b00554 10 4543 

  9. Abbas Hydrogen production by methane decomposition: A review Int. J. Hydrog. Energy 2010 10.1016/j.ijhydene.2009.11.036 35 1160 

  10. Diehm Hydrogen production by catalytic partial oxidation of methane over staged Pd/Rh coated monoliths: Spatially resolved concentration and temperature profiles Int. J. Hydrog. Energy 2014 10.1016/j.ijhydene.2014.06.094 39 17998 

  11. Vigneault Hydrogen production in multi-Channel membrane reactor via steam methane reforming and methane catalytic combustion Int. J. Hydrog. Energy 2015 10.1016/j.ijhydene.2014.10.040 40 233 

  12. Wang Effect of Pr addition on the properties of Ni/Al2O3 catalysts with an application in the autothermal reforming of methane Int. J. Hydrog. Energy 2014 10.1016/j.ijhydene.2013.10.071 39 778 

  13. Fakeeha Production of hydrogen and carbon nanofibers from methane over Ni-Co-Al catalysts Int. J. Hydrog. Energy 2015 10.1016/j.ijhydene.2014.12.011 40 1774 

  14. Abbas Production of COx-free hydrogen by the thermal decomposition of methane over activated carbon: Catalyst deactivation Int. J. Hydrog. Energy 2014 10.1016/j.ijhydene.2014.07.031 39 14783 

  15. Anjaneyulu Influence of La on reduction behavior and Ni metal surface area of Ni-Al2O3 catalysts for COx free H2 by catalytic decomposition of methane Int. J. Hydrog. Energy 2015 10.1016/j.ijhydene.2015.01.072 40 3633 

  16. Abbas Hydrogen production via decomposition of methane over activated carbons as catalysts: Full factorial design Int. J. Hydrog. Energy 2014 10.1016/j.ijhydene.2014.02.075 39 7004 

  17. Pereira Catalytic activity of carbon nanotubes in the oxidative dehydrogenation of ethylbenzene Carbon 2004 10.1016/j.carbon.2004.06.025 42 2807 

  18. Serp Carbon nanotubes and nanofibers in catalysis Appl. Catal. A Gen. 2003 10.1016/S0926-860X(03)00549-0 253 337 

  19. Iijima Helical microtubes of graphitic carbon Nature 1991 10.1038/354056a0 354 56 

  20. Lee Preparation and characterization of multi-walled carbon nanotubes impregnated with polyethyleneimine for carbon dioxide capture Int. J. Hydrog. Energy 2015 10.1016/j.ijhydene.2014.12.104 40 3415 

  21. Takenaka Formation of carbon nanofibers and carbon nanotubes through methane decomposition over supported cobalt catalysts J. Phys. Chem. B 2004 10.1021/jp048827t 108 11464 

  22. Li Evidence of composition deviation of metal particles of a NieCu/Al2O3 catalyst during methane decomposition to COx-free hydrogen Int. J. Hydrog. Energy 2009 10.1016/j.ijhydene.2008.09.106 34 299 

  23. Jana Cobalt based catalysts prepared by pechini method for CO2-free hydrogen production by methane decomposition Int. J. Hydrog. Energy 2010 10.1016/j.ijhydene.2010.07.125 35 10285 

  24. Pinilla Ni- and Fe-based catalysts for hydrogen and carbon nanofilament production by catalytic decomposition of methane in a rotary bed reactor Fuel Process. Technol. 2011 10.1016/j.fuproc.2011.03.009 92 1480 

  25. Politano Unveiling the Oxidation Processes of Pt3Ni(111) by Real-Time Surface Core-Level Spectroscopy ChemCatChem 2016 10.1002/cctc.201501157 8 713 

  26. Ren Inhibition of coking and CO poisoning of Pt catalysts by the formation of Au/Pt bimetallic surfaces Appl. Catal. A 2010 10.1016/j.apcata.2010.01.018 375 303 

  27. Baraldi Enhanced chemical reactivity of under-coordinated atoms at Pt-Rh bimetallic surfaces: A spectroscopic characterization J. Phys. Chem. C 2011 10.1021/jp110329w 115 3378 

  28. Nilekar Bimetallic and Ternary Alloys for Improved Oxygen Reduction Catalysis Top. Catal. 2007 10.1007/s11244-007-9001-z 46 276 

  29. Reshetenko Coprecipitated iron-containing catalysts (Fe-Al2O3, Fe-Co-Al2O3, Fe-Ni-Al2O3) for methane decomposition at moderate temperatures. Part II: Evolution of the catalysts in reaction Appl. Catal. A 2004 10.1016/j.apcata.2004.04.026 270 87 

  30. Shen Novel Fe-Ni nanoparticle catalyst for the production of CO- and CO2-free H2 and carbon nanotubes by dehydrogenation of methane Appl. Catal. A 2008 10.1016/j.apcata.2008.09.004 351 102 

  31. Avdeeva Iron-containing catalysts of methane decomposition: Accumulation of filamentous carbon Appl. Catal. A 2002 10.1016/S0926-860X(01)00959-0 228 53 

  32. Latorre Ni-Co-Mg-Al catalysts for hydrogen and carbonaceous nanomaterials production by CCVD of methane Catal. Today 2011 10.1016/j.cattod.2011.02.038 172 143 

  33. Shah Hydrogen production by catalytic decomposition of methane Energy Fuels 2001 10.1021/ef0101964 15 1528 

  34. Pudukudy Direct decomposition of methane over Pd promoted Ni/SBA-15 catalysts Appl. Surf. Sci. 2015 10.1016/j.apsusc.2015.06.073 353 127 

  35. Awadallah Catalytic thermal decomposition of methane to COx-free hydrogen and carbon nanotubes over MgO supported bimetallic group VIII catalysts Appl. Surf. Sci. 2014 10.1016/j.apsusc.2014.01.055 296 100 

  36. Bartholomew Carbon deposition in steam reforming and methanation Catal. Rev. Sci. Eng. 1982 10.1080/03602458208079650 24 67 

  37. Hartenstein, H.U., and Hoffman, T. (2010). Method of Regeneration of SCR Catalyst. (7723251B2), U.S. Patent. 

  38. Hazzim Thermocatalytic decomposition of methane for hydrogen production using activated carbon catalyst: Regeneration and characterization studies Int. J. Hydrog. Energy 2009 10.1016/j.ijhydene.2009.08.014 34 8034 

  39. Fakeeha Production of hydrogen by catalytic methane decomposition over alumina supported mono-, bi- and tri-metallic catalysts Int. J. Hydrog. Energy 2016 10.1016/j.ijhydene.2015.12.210 41 22932 

  40. Osman Characterization of Robust Combustion Catalyst from Aluminum Foil Waste ChemistrySelect 2018 10.1002/slct.201702660 3 1545 

  41. Zárate, J., Rosas, G., and Pérez, R. (2005). Structural Transformations of the Pseudo boehmite to a-Alumina. Adv. Technol. Mater. Mater. Process. J., 1. 

  42. Jorio Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering Phys. Rev. Lett. 2001 10.1103/PhysRevLett.86.1118 86 1118 

  43. Hou Hydrogen adsorption/desorption behavior of multi-walled carbon nanotubes with different diameters Carbon 2003 10.1016/S0008-6223(03)00271-9 41 2471 

  44. Miners Chemical reactions confined within carbon nanotubes Chem. Soc. Rev. 2016 10.1039/C6CS00090H 45 4727 

  45. Cullity, B.D. (1956). Elements of X-ray Diffractions, Addison-Wesley. 

  46. Barama Study of Methane Decomposition on Fe/MgO-Based Catalyst Modified by Ni, Co, and Mn Additives Chem. Eng. Commun. 2017 10.1080/00986445.2017.1311254 204 739 

  47. 10.3390/catal6030040 Al-Fatesh, A.S., Amin, A., Ibrahim, A.A., Khan, W.U., Soliman, M.A., AL-Otaibi, R.L., and Fakeeha, A.H. (2016). Effect of Ce and Co Addition to Fe/Al2O3 for Catalytic Methane Decomposition. Catalysts, 6. 

  48. Ferrari Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and non-adiabatic effects Solid State Commun. 2007 10.1016/j.ssc.2007.03.052 143 47 

  49. Shi Structure evolution of spinel Fe-MII (M=Mn, Fe, Co, Ni) ferrite in CO hydrogeneration Mol. Catal. 2018 10.1016/j.mcat.2018.06.019 456 31 

  50. Khan Relationship between temperature-programmed reduction profile and activity of modified ferrite-based catalysts for WGS reaction J. Mol. Catal. A Chem. 2008 10.1016/j.molcata.2007.10.022 280 43 

  51. Jo Selective CO hydrogenation over bimetallic Co-Fe catalysts for the production of light paraffin hydrocarbons (C2-C4): Effect of H2/CO ratio and reaction temperature Catal. Commun. 2018 10.1016/j.catcom.2018.08.026 117 74 

  52. Zhou Fe catalysts for methane decomposition to produce hydrogen and carbon nano materials Appl. Catal. B Environ. 2017 10.1016/j.apcatb.2017.02.052 208 44 

  53. Muradov Fossil hydrogen with reduced CO2 emission: Modeling thermocatalytic decomposition of methane in a fluidized bed of carbon particles Int. J. Hydrog. Energy 2005 10.1016/j.ijhydene.2005.04.005 30 1149 

  54. Moliner Thermo-catalytic decomposition of methane over activated carbons: Influence of textural properties and surface chemistry Int. J. Hydrog. Energy 2005 10.1016/j.ijhydene.2004.03.035 30 293 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로