$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Recent Development of Flexible and Stretchable Antennas for Bio-Integrated Electronics 원문보기

Sensors, v.18 no.12, 2018년, pp.4364 -   

Zhu, Jia (Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA) ,  Cheng, Huanyu (jmz5364@psu.edu)

Abstract AI-Helper 아이콘AI-Helper

Wireless technology plays an important role in data communication and power transmission, which has greatly boosted the development of flexible and stretchable electronics for biomedical applications and beyond. As a key component in wireless technology, flexible and stretchable antennas need to be ...

주제어

참고문헌 (123)

  1. 1. Balanis C.A. Antenna theory: A review Proc. IEEE 1992 80 7 23 10.1109/5.119564 

  2. 2. Rogers J.A. Someya T. Huang Y. Materials and mechanics for stretchable electronics Science 2010 327 1603 1607 10.1126/science.1182383 20339064 

  3. 3. Cheng H. Yi N. Dissolvable tattoo sensors: From science fiction to a viable technology Phys. Scr. 2017 92 13001 10.1088/0031-8949/92/1/013001 

  4. 4. Bai W. Kuang T. Chitrakar C. Yang R. Li S. Zhu D. Chang L. Patchable micro/nanodevices interacting with skin Biosens. Bioelectron. 2018 122 189 204 10.1016/j.bios.2018.09.035 30265969 

  5. 5. Huang H. Flexible Wireless Antenna Sensor: A Review IEEE Sens. J. 2013 13 3865 3872 10.1109/JSEN.2013.2242464 

  6. 6. Domdouzis K. Kumar B. Anumba C. Radio-Frequency Identification (RFID) applications: A brief introduction Adv. Eng. Inform. 2007 21 350 355 10.1016/j.aei.2006.09.001 

  7. 7. Rogers J.A. Lagally M.G. Nuzzo R.G. Synthesis, assembly and applications of semiconductor nanomembranes Nature 2011 477 45 53 10.1038/nature10381 21886156 

  8. 8. Timoshenko S. MacCullough G.H. Elements of Strength of Materials Van Nostrand Princeton, NJ, USA 1949 

  9. 9. Lin C.P. Chang C.H. Cheng Y.T. Jou C.F. Development of a flexible SU-8/PDMS-based antenna IEEE Antennas Wirel. Propag. Lett. 2011 10 1108 1111 10.1109/LAWP.2011.2170398 

  10. 10. Scarpello M.L. Kurup D. Rogier H. Ginste D.V. Axisa F. Vanfleteren J. Joseph W. Martens L. Vermeeren G. Design of an implantable slot dipole conformal flexible antenna for biomedical applications IEEE Trans. Antennas Propag. 2011 59 3556 3564 10.1109/TAP.2011.2163761 

  11. 11. Inui T. Koga H. Nogi M. Komoda N. Suganuma K. A Miniaturized Flexible Antenna Printed on a High Dielectric Constant Nanopaper Composite Adv. Mater. 2015 27 1112 1116 10.1002/adma.201404555 25530578 

  12. 12. Jung Y.H. Qiu Y. Lee S. Shih T. Xu Y. Xu R. Lee J. Schendel A.A. Lin W. Williams J.C. A Compact Parylene-Coated WLAN Flexible Antenna for Implantable Electronics IEEE Antennas Wirel. Propag. Lett. 2016 15 1382 1385 10.1109/LAWP.2015.2510372 

  13. 13. Xiao W. Mei T. Lan Y. Wu Y. Xu R. Xu Y. Triple band-notched UWB monopole antenna on ultra-thin liquid crystal polymer based on ESCSRR Electron. Lett. 2017 53 57 58 10.1049/el.2016.3807 

  14. 14. Chang T. Tanabe Y. Wojcik C.C. Barksdale A.C. Doshay S. Dong Z. Liu H. Zhang M. Chen Y. Su Y. A General Strategy for Stretchable Microwave Antenna Systems using Serpentine Mesh Layouts Adv. Funct. Mater. 2017 27 1703059 10.1002/adfm.201703059 

  15. 15. Roy B. Bhatterchya A.K. Choudhury S.K. Characterization of textile substrate to design a textile antenna Proceedings of the 2013 International Conference on Microwave and Photonics, ICMAP 2013 Dhanbad, India 13–15 December 2013 IEEE Piscataway, NJ, USA 2013 1 5 

  16. 16. Stoppa M. Chiolerio A. Wearable electronics and smart textiles: A critical review Sensors 2014 14 11957 11992 10.3390/s140711957 25004153 

  17. 17. Salvado R. Loss C. Gonçalves R. Pinho P. Textile materials for the design of wearable antennas: A survey Sensors 2012 12 15841 15857 10.3390/s121115841 23202235 

  18. 18. Potey P.M. Tuckley K. Design of wearable textile antenna with various substrate and investigation on fabric selection Proceedings of the 2018 3rd International Conference on Microwave and Photonics (ICMAP) Dhanbad, India 9–11 February 2018 1 2 

  19. 19. Salonen P. Rahmat-Samii Y. Schaffrath M. Kivikoski M. Effect of textile materials on wearable antenna performance: A case study of GPS antennas IEEE Antennas Propag. Soc. Symp. 2004 1 459 462 

  20. 20. Wu B. Zhang B. Wu J. Wang Z. Ma H. Yu M. Li L. Li J. Electrical switchability and dry-wash durability of conductive textiles Sci. Rep. 2015 5 11255 10.1038/srep11255 26066704 

  21. 21. Shahpari M. Thiel D.V. The Impact of Reduced Conductivity on the Performance of Wire Antennas IEEE Trans. Antennas Propag. 2015 63 4686 4692 10.1109/TAP.2015.2479241 

  22. 22. Siden J. Fein M.K. Koptyug A. Nilsson H.-E. Printed antennas with variable conductive ink layer thickness IET Microw. Antennas Propag. 2007 1 401 407 10.1049/iet-map:20060021 

  23. 23. Seyedin S. Razal J.M. Innis P.C. Jeiranikhameneh A. Beirne S. Wallace G.G. Knitted Strain Sensor Textiles of Highly Conductive All-Polymeric Fibers ACS Appl. Mater. Interfaces 2015 7 21150 21158 10.1021/acsami.5b04892 26334190 

  24. 24. Govaert F. Vanneste M. Preparation and application of conductive textile coatings filled with honeycomb structured carbon nanotubes J. Nanomater. 2014 2014 1 6 10.1155/2014/651265 

  25. 25. Lee H. Kim H. Cho M.S. Choi J. Lee Y. Fabrication of polypyrrole (PPy)/carbon nanotube (CNT) composite electrode on ceramic fabric for supercapacitor applications Electrochim. Acta 2011 56 7460 7466 10.1016/j.electacta.2011.06.113 

  26. 26. Benson J. Kovalenko I. Boukhalfa S. Lashmore D. Sanghadasa M. Yushin G. Multifunctional CNT-polymer composites for ultra-tough structural supercapacitors and desalination devices Adv. Mater. 2013 25 6625 6632 10.1002/adma.201301317 23970397 

  27. 27. Oliva-Avilés A.I. Avilés F. Sosa V. Electrical and piezoresistive properties of multi-walled carbon nanotube/polymer composite films aligned by an electric field Carbon 2011 49 2989 2997 10.1016/j.carbon.2011.03.017 

  28. 28. Lin H. Li L. Ren J. Cai Z. Qiu L. Yang Z. Peng H. Conducting polymer composite film incorporated with aligned carbon nanotubes for transparent, flexible and efficient supercapacitor Sci. Rep. 2013 3 1353 10.1038/srep01353 23443325 

  29. 29. Sun X. Sun H. Li H. Peng H. Developing Polymer Composite Materials: Carbon Nanotubes or Graphene? Adv. Mater. 2013 25 5153 5176 10.1002/adma.201301926 23813859 

  30. 30. Park M. Kim H. Youngblood J.P. Strain-dependent electrical resistance of multi-walled carbon nanotube/polymer composite films Nanotechnology 2008 19 055705 10.1088/0957-4484/19/05/055705 21817619 

  31. 31. Chen S.J. Fumeaux C. Chivers B. Shepherd R. A 5.8-GHz flexible microstrip-fed slot antenna realized in PEDOT:PSS conductive polymer Proceedings of the 2016 IEEE International Symposium on Antennas and Propagation (APSURSI) Fajardo, Puerto Rico 26 June–1 July 2016 1317 1318 

  32. 32. Zhou Y. Bayram Y. Dai L. Volakis J.L. Conformal load-bearing polymer-carbon nanotube antennas and RF front-ends Proceedings of the 2009 IEEE Antennas and Propagation Society International Symposium Charleston, SC, USA 1–5 June 2009 1 4 

  33. 33. Locher I. Klemm M. Kirstein T. Tröster G. Design and characterization of purely textile patch antennas IEEE Trans. Adv. Packag. 2006 29 777 788 10.1109/TADVP.2006.884780 

  34. 34. Guo R.H. Jiang S.X. Yuen C.W.M. Ng M.C.F. Lan J.W. Optimization of electroless nickel plating on polyester fabric Fibers Polym. 2013 14 459 464 10.1007/s12221-013-0459-y 

  35. 35. Jiang S.Q. Kan C.W. Yuen C.W.M. Wong W.K. Electroless nickel plating of polyester fiber J. Appl. Polym. Sci. 2008 108 2630 2637 10.1002/app.27154 

  36. 36. Liu S. Hu M. Yang J. A facile way of fabricating a flexible and conductive cotton fabric J. Mater. Chem. C 2016 4 1320 1325 10.1039/C5TC03679H 

  37. 37. Wang Z. Zhang L. Bayram Y. Volakis J.L. Embroidered Conductive Fibers on Polymer Composite for Conformal Antennas IEEE Trans. Antennas Propag. 2012 60 4141 4147 10.1109/TAP.2012.2207055 

  38. 38. Kiourti A. Volakis J.L. High-accuracy conductive textiles for embroidered antennas and circuits Proceedings of the 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting Vancouver, BC, Canada 19–24 July 2015 1194 

  39. 39. Xu F. Zhu H. Ma Y. Qiu Y. Electromagnetic performance of a three-dimensional woven fabric antenna conformal with cylindrical surfaces Text. Res. J. 2016 87 147 154 10.1177/0040517515624878 

  40. 40. Li B. Li D. Wang J. Copper deposition on textiles via an automated dispensing process for flexible microstrip antennas Text. Res. J. 2014 84 2026 2035 10.1177/0040517514534753 

  41. 41. Liu S. Liu Y. Li L. The impact of different proportions of knitting elements on the resistive properties of conductive fabrics Text. Res. J. 2018 0040517518758003 10.1177/0040517518758003 

  42. 42. Zhou J. Li Y. Jimmy L. Cao X. The Poisson Ratio and Modulus of Elastic Knitted Fabrics Text. Res. J. 2010 80 1965 1969 10.1177/0040517510371864 

  43. 43. Mahmud M.S. Jabri F.J.J. Mahjabeen B. Compact UWB Wearable antenna on leather material for wireless applications Proceedings of the IEEE Antennas and Propagation Society, AP-S International Symposium (Digest) Orlando, FL, USA 7–13 July 2013 2191 2192 

  44. 44. Kaufmann T. Fumeaux I. Fumeaux C. Comparison of fabric and embroidered dipole antennas Proceedings of the 2013 7th European Conference on Antennas and Propagation (EuCAP) Gothenburg, Sweden 8–12 April 2013 3252 3255 

  45. 45. Saini N.S. Shao S. Kiourti A. Burkholder R.J. Volakis J.L. RFID tags for in-situ tire monitoring Proceedings of the 2016 URSI International Symposium on Electromagnetic Theory, EMTS 2016 Espoo, Finland 14–18 August 2016 IEEE Piscataway, NJ, USA 2016 575 578 

  46. 46. Kiourti A. Volakis J.L. Stretchable and flexible E-fiber wire antennas embedded in polymer IEEE Antennas Wirel. Propag. Lett. 2014 13 1381 1384 10.1109/LAWP.2014.2339636 

  47. 47. Park Y.-L. Majidi C. Kramer R. Bérard P. Wood R.J. Hyperelastic pressure sensing with a liquid-embedded elastomer J. Micromech. Microeng. 2010 20 125029 10.1088/0960-1317/20/12/125029 

  48. 48. Dickey M.D. Stretchable and Soft Electronics using Liquid Metals Adv. Mater. 2017 29 1606425 10.1002/adma.201606425 

  49. 49. Dickey M.D. Emerging Applications of Liquid Metals Featuring Surface Oxides ACS Appl. Mater. Interfaces 2014 6 18369 18379 10.1021/am5043017 25283244 

  50. 50. Zhu S. So J.-H. Mays R. Desai S. Barnes W.R. Pourdeyhimi B. Dickey M.D. Ultrastretchable Fibers with Metallic Conductivity Using a Liquid Metal Alloy Core Adv. Funct. Mater. 2012 23 2308 2314 10.1002/adfm.201202405 

  51. 51. Kim H.J. Son C. Ziaie B. A multiaxial stretchable interconnect using liquid-alloy-filled elastomeric microchannels Appl. Phys. Lett. 2008 92 011904 10.1063/1.2829595 

  52. 52. Kim H.J. Maleki T. Wei P. Ziaie B. A biaxial stretchable interconnect with liquid-alloy-covered joints on elastomeric substrate J. Microelectromech. Syst. 2009 18 138 146 10.1109/JMEMS.2008.2011118 

  53. 53. Cheng S. Wu Z. Microfluidic electronics Lab Chip 2012 12 2782 2791 10.1039/c2lc21176a 22711057 

  54. 54. Liu P. Yang S. Jain A. Wang Q. Jiang H. Song J. Koschny T. Soukoulis C.M. Dong L. Tunable meta-atom using liquid metal embedded in stretchable polymer J. Appl. Phys. 2015 118 14504 10.1063/1.4926417 

  55. 55. Cheng S. Wu Z. Microfluidic stretchable RF electronics Lab Chip 2010 10 3227 3234 10.1039/c005159d 20877884 

  56. 56. Cheng S. Rydberg A. Hjort K. Wu Z. Liquid metal stretchable unbalanced loop antenna Appl. Phys. Lett. 2009 94 144103 10.1063/1.3114381 

  57. 57. Kubo M. Li X. Kim C. Hashimoto M. Wiley B.J. Ham D. Whitesides G.M. Stretchable microfluidic radiofrequency antennas Adv. Mater. 2010 22 2749 2752 10.1002/adma.200904201 20414886 

  58. 58. So J.H. Thelen J. Qusba A. Hayes G.J. Lazzi G. Dickey M.D. Reversibly deformable and mechanically tunable fluidic antennas Adv. Funct. Mater. 2009 19 3632 3637 10.1002/adfm.200900604 

  59. 59. Cheng S. Wu Z. A Microfluidic, Reversibly Stretchable, Large-Area Wireless Strain Sensor Adv. Funct. Mater. 2011 21 2282 2290 10.1002/adfm.201002508 

  60. 60. Hayes G.J. So J.-H. Qusba A. Dickey M.D. Lazzi G. Flexible Liquid Metal Alloy (EGaIn) Microstrip Patch Antenna IEEE Trans. Antennas Propag. 2012 60 2151 2156 10.1109/TAP.2012.2189698 

  61. 61. Cheng S. Wu Z. Hjort K. Rydberg A. Hallbjörner P. Foldable and Stretchable Liquid Metal Planar Inverted Cone Antenna OGIR II View project MEMS terahertz systems View project Foldable and Stretchable Liquid Metal Planar Inverted Cone Antenna IEEE Trans. Antennas Propag. 2009 57 10.1109/TAP.2009.2024560 

  62. 62. So J.-H. Dickey M.D. Inherently aligned microfluidic electrodes composed of liquid metal Lab Chip 2011 11 905 911 10.1039/c0lc00501k 21264405 

  63. 63. Wang M. Trlica C. Khan M.R. Dickey M.D. Adams J.J. A reconfigurable liquid metal antenna driven by electrochemically controlled capillarity J. Appl. Phys. 2015 117 194901 10.1063/1.4919605 

  64. 64. Huang Y. Wang Y. Xiao L. Liu H. Dong W. Yin Z. Microfluidic serpentine antennas with designed mechanical tunability Lab Chip 2014 14 4205 4212 10.1039/C4LC00762J 25144304 

  65. 65. Shui X. Chung D.D.L. A piezoresistive carbon filament polymer-matrix composite strain sensor Smart Mater. Struct. 1996 5 243 10.1088/0964-1726/5/2/014 

  66. 66. Lee D. Hong H.P. Lee M.J. Park C.W. Min N.K. A prototype high sensitivity load cell using single walled carbon nanotube strain gauges Sens. Actuators A Phys. 2012 180 120 126 10.1016/j.sna.2012.04.015 

  67. 67. Yamada T. Hayamizu Y. Yamamoto Y. Yomogida Y. Izadi-Jajafabadi A. Futaba D.N. Hata K. A Stretchable Carbon Nanotube Strain Sensor for Human-Motion Detection Nat. Nanotechnol. 2011 6 296 301 10.1038/nnano.2011.36 21441912 

  68. 68. Hempel M. Nezich D. Kong J. Hofmann M. A Novel Class of Strain Gauges Based on Layered Percolative Films of 2D Materials Nano Lett. 2012 12 5714 5718 10.1021/nl302959a 23045955 

  69. 69. Amjadi M. Pichitpajongkit A. Lee S. Ryu S. Park I. Highly Stretchable and Sensitive Strain Sensor Based on Silver Nanowire–Elastomer Nanocomposite ACS Nano 2014 8 5154 5163 10.1021/nn501204t 24749972 

  70. 70. Kost J. Foux A. Narkis M. Quantitative model relating electrical resistance, strain, and time for carbon black loaded silicone rubber Polym. Eng. Sci. 1994 34 1628 1634 10.1002/pen.760342108 

  71. 71. Wack P.E. Anthony R.L. Guth E. Electrical Conductivity of GR-S and Natural Rubber Stocks Loaded with Shawinigan and R-40 Blacks J. Appl. Phys. 1947 18 456 469 10.1063/1.1697676 

  72. 72. Wichmann M.H.G. Buschhorn S.T. Gehrmann J. Schulte K. Piezoresistive response of epoxy composites with carbon nanoparticles under tensile load Phys. Rev. B Condens. Matter Mater. Phys. 2009 80 245437 10.1103/PhysRevB.80.245437 

  73. 73. Zhang X.W. Pan Y. Zheng Q. Yi X.S. Time dependence of piezoresistance for the conductor-filled polymer composites J. Polym. Sci. Part B Polym. Phys. 2000 38 2739 2749 10.1002/1099-0488(20001101)38:21 3.0.CO;2-O 

  74. 74. Chen Z. Xi J. Huang W. Yuen M.M.F. Stretchable conductive elastomer for wireless wearable communication applications Sci. Rep. 2017 7 10958 10.1038/s41598-017-11392-w 28887503 

  75. 75. Sekitani T. Noguchi Y. Hata K. Fukushima T. Aida T. Someya T. A rubberlike stretchable active matrix using elastic conductors Science 2008 321 1468 1472 10.1126/science.1160309 18687922 

  76. 76. Sekitani T. Nakajima H. Maeda H. Fukushima T. Aida T. Hata K. Someya T. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors Nat. Mater. 2009 8 494 499 10.1038/nmat2459 19430465 

  77. 77. Taya M. Kim W.J. Ono K. Piezoresistivity of a short fiber/elastomer matrix composite Mech. Mater. 1998 28 53 59 10.1016/S0167-6636(97)00064-1 

  78. 78. Rai T. Dantes P. Bahreyni B. Kim W.S. A stretchable RF antenna with silver nanowires IEEE Electron Device Lett. 2013 34 544 546 10.1109/LED.2013.2245626 

  79. 79. Song L. Myers A.C. Adams J.J. Zhu Y. Stretchable and reversibly deformable radio frequency antennas based on silver nanowires ACS Appl. Mater. Interfaces 2014 6 4248 4253 10.1021/am405972e 24593878 

  80. 80. Park M. Im J. Shin M. Min Y. Park J. Cho H. Park S. Shim M.B. Jeon S. Chung D.Y. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres Nat. Nanotechnol. 2012 7 803 809 10.1038/nnano.2012.206 23178335 

  81. 81. Li Z. Le T. Wu Z. Yao Y. Li L. Tentzeris M. Moon K.S. Wong C.P. Rational design of a printable, highly conductive silicone-based electrically conductive adhesive for stretchable radio-frequency antennas Adv. Funct. Mater. 2015 25 464 470 10.1002/adfm.201403275 

  82. 82. Wang Y. Zhu C. Pfattner R. Yan H. Jin L. Chen S. Molina-Lopez F. Lissel F. Liu J. Rabiah N.I. A highly stretchable, transparent, and conductive polymer Sci. Adv. 2017 3 e1602076 10.1126/sciadv.1602076 28345040 

  83. 83. Matsuhisa N. Inoue D. Zalar P. Jin H. Matsuba Y. Itoh A. Yokota T. Hashizume D. Someya T. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes Nat. Mater. 2017 16 834 10.1038/nmat4904 28504674 

  84. 84. Choi S. Han S.I. Jung D. Hwang H.J. Lim C. Bae S. Park O.K. Tschabrunn C.M. Lee M. Bae S.Y. Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics Nat. Nanotechnol. 2018 13 1048 1056 10.1038/s41565-018-0226-8 30104619 

  85. 85. Pashley D.W. A Study of the Deformation and Fracture of Single-Crystal Gold Films of High Strength inside an Electron Microscope Proc. R. Soc. A Math. Phys. Eng. Sci. 1960 255 218 231 10.1098/rspa.1960.0064 

  86. 86. Kim D.H. Lu N. Huang Y. Rogers J.A. Materials for stretchable electronics in bioinspired and biointegrated devices MRS Bull. 2012 37 226 235 10.1557/mrs.2012.36 

  87. 87. Jang K.I. Chung H.U. Xu S. Lee C.H. Luan H. Jeong J. Cheng H. Kim G.T. Han S.Y. Lee J.W. Soft network composite materials with deterministic and bio-inspired designs Nat. Commun. 2015 6 6566 10.1038/ncomms7566 25782446 

  88. 88. Lacour S.P. Wagner S. Huang Z. Suo Z. Stretchable gold conductors on elastomeric substrates Appl. Phys. Lett. 2003 82 2404 2406 10.1063/1.1565683 

  89. 89. Kim J. Banks A. Cheng H. Xie Z. Xu S. Jang K.I. Lee J.W. Liu Z. Gutruf P. Huang X. Epidermal electronics with advanced capabilities in near-field communication Small 2015 11 906 912 10.1002/smll.201402495 25367846 

  90. 90. Liu Q. Ford K.L. Langley R. Robinson A. Lacour S. Stretchable antennas Proceedings of the 6th European Conference on Antennas and Propagation, EuCAP 2012 Prague, Czech Republic 26–30 March 2012 IEEE Piscataway, NJ, USA 2012 168 171 

  91. 91. Arriola A. Sancho J.I. Brebels S. Gonzalez M. De Raedt W. Stretchable dipole antenna for body area networks at 2.45 GHz IET Microw. Antennas Propag. 2011 5 852 10.1049/iet-map.2010.0436 

  92. 92. Fan J.A. Yeo W.H. Su Y. Hattori Y. Lee W. Jung S.Y. Zhang Y. Liu Z. Cheng H. Falgout L. Fractal design concepts for stretchable electronics Nat. Commun. 2014 5 3266 10.1038/ncomms4266 24509865 

  93. 93. Hussain A.M. Ghaffar F.A. Park S.I. Rogers J.A. Shamim A. Hussain M.M. Metal/Polymer Based Stretchable Antenna for Constant Frequency Far-Field Communication in Wearable Electronics Adv. Funct. Mater. 2015 25 6565 6575 10.1002/adfm.201503277 

  94. 94. Huang X. Liu Y. Kong G.W. Seo J.H. Ma Y. Jang K.-I. Fan J.A. Mao S. Chen Q. Li D. Epidermal radio frequency electronics for wireless power transfer Microsyst. Nanoeng. 2016 2 16052 10.1038/micronano.2016.52 

  95. 95. Park S.I. Brenner D.S. Shin G. Morgan C.D. Copits B.A. Chung H.U. Pullen M.Y. Noh K.N. Davidson S. Oh S.J. Yoon J. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics Nat. Biotechnol. 2015 33 1280 1286 10.1038/nbt.3415 26551059 

  96. 96. Park S.I. Shin G. McCall J.G. Al-Hasani R. Norris A. Xia L. Brenner D.S. Noh K.N. Bang S.Y. Bhatti D.L. Jang K.-I. Stretchable multichannel antennas in soft wireless optoelectronic implants for optogenetics Proc. Natl. Acad. Sci. USA 2016 113 E8169 E8177 10.1073/pnas.1611769113 27911798 

  97. 97. Shin G. Gomez A.M. Al-Hasani R. Jeong Y.R. Kim J. Xie Z. Banks A. Lee S.M. Han S.Y. Yoo C.J. Flexible Near-Field Wireless Optoelectronics as Subdermal Implants for Broad Applications in Optogenetics Neuron 2017 93 509 521.e3 10.1016/j.neuron.2016.12.031 28132830 

  98. 98. Blumenschein L.H. Gan L.T. Fan J.A. Okamura A.M. Hawkes E.W. A Tip-Extending Soft Robot Enables Reconfigurable and Deployable Antennas IEEE Robot. Autom. Lett. 2018 3 949 956 10.1109/LRA.2018.2793303 

  99. 99. Ning X. Yu X. Wang H. Sun R. Corman R.E. Li H. Lee C.M. Xue Y. Chempakasseril A. Yao Y. Mechanically active materials in three-dimensional mesostructures Sci. Adv. 2018 4 eaat8313 10.1126/sciadv.aat8313 30225368 

  100. 100. Hayes G.J. Liu Y. Genzer J. Lazzi G. Dickey M.D. Self-Folding Origami Microstrip Antennas IEEE Trans. Antennas Propag. 2014 62 5416 5419 10.1109/TAP.2014.2346188 

  101. 101. Li P.K. You C.J. Yu H.F. Cheng Y.J. Mechanically pattern reconfigurable dual-band antenna with omnidirectional/directional pattern for 2.4/5GHz WLAN application Microw. Opt. Technol. Lett. 2017 59 2526 2531 10.1002/mop.30778 

  102. 102. Jung Y.H. Lee J. Qiu Y. Cho N. Cho S.J. Zhang H. Lee S. Kim T.J. Gong S. Ma Z. Stretchable Twisted-Pair Transmission Lines for Microwave Frequency Wearable Electronics Adv. Funct. Mater. 2016 26 4635 4642 10.1002/adfm.201600856 

  103. 103. Tiercelin N. Coquet P. Sauleau R. Senez V. Fujita H. Polydimethylsiloxane membranes for millimeter-wave planar ultra flexible antennas J. Micromech. Microeng. 2006 16 2389 10.1088/0960-1317/16/11/020 

  104. 104. Babar A.A. Bjorninen T. Bhagavati V.A. Sydanheimo L. Kallio P. Ukkonen L. Small and Flexible Metal Mountable Passive UHF RFID Tag on High-Dielectric Polymer-Ceramic Composite Substrate IEEE Antennas Wirel. Propag. Lett. 2012 11 1319 1322 10.1109/LAWP.2012.2227291 

  105. 105. Cure D. Weller T. Miranda F.A. Study of a flexible low profile tunable dipole antenna using barium strontium titanate varactors Proceedings of the 8th European Conference on Antennas and Propagation (EuCAP 2014) The Hague, The Netherlands 6–11 April 2014 31 35 

  106. 106. Dang Z.-M. Wang L. Yin Y. Zhang Q. Lei Q.-Q. Giant Dielectric Permittivities in Functionalized Carbon-Nanotube/Electroactive-Polymer Nanocomposites Adv. Mater. 2007 19 852 857 10.1002/adma.200600703 

  107. 107. Panda M. Srinivas V. Thakur A.K. Surface and interfacial effect of filler particle on electrical properties of polyvinyledene fluoride/nickel composites Appl. Phys. Lett. 2008 93 242908 10.1063/1.3054163 

  108. 108. Huang X. Jiang P. Xie L. Ferroelectric polymer/silver nanocomposites with high dielectric constant and high thermal conductivity Appl. Phys. Lett. 2009 95 242901 10.1063/1.3273368 

  109. 109. Castro J. Rojas E. Weller T. Wang J. High-k and low-loss polymer composites with co-fired Nd and Mg-Ca titanates for 3D RF and microwave printed devices: Fabrication and characterization Proceedings of the 2015 IEEE 16th Annual Wireless and Microwave Technology Conference (WAMICON) Cocoa Beach, FL, USA 13–15 April 2015 1 5 

  110. 110. Babar A.A. Bhagavati V.A. Ukkonen L. Elsherbeni A.Z. Kallio P. Syd L. Performance of High-Permittivity Ceramic-Polymer Composite as a Substrate for UHF RFID Tag Antennas Int. J. Antennas Propag. 2012 2012 8 10.1155/2012/905409 

  111. 111. Wang Y. Liu Y. Du H. Liu C. Xue Q. Gao X. Li S. Lu Y. A Frequency Reconfigurable Microstrip Antenna Based on (Ba, Sr)TiO 3 Substrate IEEE Trans. Antennas Propag. 2015 63 770 775 10.1109/TAP.2014.2378275 

  112. 112. Inui T. Koga H. Nogi M. Komoda N. Suganuma K. High-dielectric paper composite consisting of cellulose nanofiber and silver nanowire Proceedings of the 14th IEEE International Conference on Nanotechnology Toronto, ON, Canada 18–21 August 2014 470 473 

  113. 113. Crippa M. Bianchi A. Cristofori D. D’Arienzo M. Merletti F. Morazzoni F. Scotti R. Simonutti R. High dielectric constant rutile–polystyrene composite with enhanced percolative threshold J. Mater. Chem. C 2013 1 484 492 10.1039/C2TC00042C 

  114. 114. Huang C. Zhang Q. Enhanced Dielectric and Electromechanical Responses in High Dielectric Constant All-Polymer Percolative Composites Adv. Funct. Mater. 2004 14 501 506 10.1002/adfm.200305021 

  115. 115. Jiang P. Li S.-Y. Xie S.-S. Gao Y. Song L. Machinable Long PVP-Stabilized Silver Nanowires Chem. A Eur. J. 2004 10 4817 4821 10.1002/chem.200400318 15372648 

  116. 116. Lo Y. Solomon D. Richards W. Theory and experiment on microstrip antennas IEEE Trans. Antennas Propag. 1979 27 137 145 10.1109/TAP.1979.1142057 

  117. 117. Romasanta L.J. Lopez-Manchado M.A. Verdejo R. Increasing the performance of dielectric elastomer actuators: A review from the materials perspective Prog. Polym. Sci. 2015 51 188 211 10.1016/j.progpolymsci.2015.08.002 

  118. 118. Jiang L. Betts A. Kennedy D. Jerrams S. The fabrication of dielectric elastomers from silicone rubber and barium titanate: Employing equi-biaxial pre-stretch to achieve large deformations J. Mater. Sci. 2015 50 7930 7938 10.1007/s10853-015-9357-6 

  119. 119. Aïssa B. Nedil M. Habib M.A. Haddad E. Jamroz W. Therriault D. Coulibaly Y. Rosei F. Fluidic patch antenna based on liquid metal alloy/single-wall carbon-nanotubes operating at the S-band frequency Appl. Phys. Lett. 2013 103 63101 10.1063/1.4817861 

  120. 120. Xu F. Zhu Y. Highly Conductive and Stretchable Silver Nanowire Conductiors Adv. Mater. 2012 24 5117 5122 10.1002/adma.201201886 22786752 

  121. 121. Liu C.-X. Choi J.-W. Patterning conductive PDMS nanocomposite in an elastomer using microcontact printing J. Micromech. Microeng. 2009 19 85019 10.1088/0960-1317/19/8/085019 

  122. 122. Wang X. Jiang M. Zhou Z. Gou J. Hui D. 3D printing of polymer matrix composites: A review and prospective Compos. Part B Eng. 2017 110 442 458 10.1016/j.compositesb.2016.11.034 

  123. 123. Tian K. Bae J. Bakarich S.E. Yang C. Gately R.D. Spinks G.M. in het Panhuis M. Suo Z. Vlassak J.J. 3D Printing of Transparent and Conductive Heterogeneous Hydrogel–Elastomer Systems Adv. Mater. 2017 29 1604827 10.1002/adma.201604827 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로