$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

Purpose:Niclosamide, an FDA-approved anthelmintic drug, has been characterized as a potent Wnt inhibitor that can suppress tumor growth and cancer stem-like cell (CSC) populations. However, the underlying molecular mechanisms remain poorly understood. This study aimed to examine how Wnt inhibition by niclosamide preferentially targets CSCs.Experimental Design:The mechanistic role of niclosamide in CSC inhibition was examined in public databases, human colorectal cancer cells, colorectal cancer xenografts, and azoxymethane/dextran sulfate sodium (AOM/DSS)-induced colorectal cancer model.Results:Niclosamide suppresses CSC populations and their self-renewal activities in colorectal cancer cells, and this CSC-targeting effect leads to irreversible disruption of tumor-initiating potential in vivo. Mechanistically, niclosamide downregulates multiple signaling components of the Wnt pathway, specifically lymphoid enhancer-binding factor 1 (LEF1) expression, which is critical for regulating stemness. Subsequently, we identified that the doublecortin-like kinase 1 (DCLK1)-B is a target of LEF1 and upregulates cancer stemness in colorectal cancer cells. We first documented that niclosamide blocks the transcription of DCLK1-B by interrupting the binding of LEF1 to DCLK1-B promoter. DCLK1-B depletion impairs cancer stemness resulting in reduced survival potential and increased apoptosis, thus sensitizing colorectal cancer to chemoradiation.Conclusions:Disruption of the LEF1/DCLK1-B axis by niclosamide eradicates cancer stemness and elicits therapeutic effects on colorectal cancer initiation, progression, and resistance. These findings provide a preclinical rationale to broaden the clinical evaluation of niclosamide for the treatment of colorectal cancer.

  

참고문헌 (50)

  1. 1. Arnold, Melina, Sierra, Mónica S, Laversanne, Mathieu, Soerjomataram, Isabelle, Jemal, Ahmedin, Bray, Freddie. Global patterns and trends in colorectal cancer incidence and mortality. Gut: journal of the British Society of Gastroenterology, vol.66, no.4, 683-691.
  2. 2. Kotsopoulos, Joanne, Huzarski, Tomasz, Gronwald, Jacek, Singer, Christian F, Moller, Pal, Lynch, Henry T, Armel, Susan, Karlan, Beth, Foulkes, William D, Neuhausen, Susan L, Senter, Leigha, Tung, Nadine, Weitzel, Jeffrey N, Eisen, Andrea, Metcalfe, Kelly, Eng, Charis, Pal, Tuya, Evans, Gareth, Sun, Ping, Lubinski, Jan, Narod, Steven A. Bilateral Oophorectomy and Breast Cancer Risk inBRCA1andBRCA2Mutation Carriers. Journal of the National Cancer Institute: JNCI, vol.109, no.1,
  3. 3. World J Gastrointest Pathophysiol Kanwar 3 1 2012 10.4291/wjgp.v3.i1.1 Regulation of colon cancer recurrence and development of therapeutic strategies 
  4. 4. Cell Mol Gastroenterol Hepatol Zarour 3 163 2017 10.1016/j.jcmgh.2017.01.006 Colorectal cancer liver metastasis: evolving paradigms and future directions 
  5. 5. Batlle, Eduard, Clevers, Hans. Cancer stem cells revisited. Nature medicine, vol.23, no.10, 1124-1134.
  6. 6. Anderson, Eric C., Wong, Melissa H.. Caught in the Akt: Regulation of Wnt Signaling in the Intestine. Gastroenterology, vol.139, no.3, 718-722.
  7. 7. Novellasdemunt, Laura, Antas, Pedro, Li, Vivian S. W.. Targeting Wnt signaling in colorectal cancer. A Review in the Theme: Cell Signaling: Proteins, Pathways and Mechanisms. American journal of physiology. Cell physiology, vol.309, no.8, C511-C521.
  8. 8. Westphalen, C. Benedikt, Asfaha, Samuel, Hayakawa, Yoku, Takemoto, Yoshihiro, Lukin, Dana J., Nuber, Andreas H., Brandtner, Anna, Setlik, Wanda, Remotti, Helen, Muley, Ashlesha, Chen, Xiaowei, May, Randal, Houchen, Courtney W., Fox, James G., Gershon, Michael D., Quante, Michael, Wang, Timothy C.. Long-lived intestinal tuft cells serve as colon cancer-initiating cells. The Journal of clinical investigation, vol.124, no.3, 1283-1295.
  9. 9. Schwitalla, S., Fingerle, Alexander A., Cammareri, P., Nebelsiek, T., Goktuna, Serkan I., Ziegler, Paul K., Canli, O., Heijmans, J., Huels, David J., Moreaux, G., Rupec, Rudolf A., Gerhard, M., Schmid, R., Barker, N., Clevers, H., Lang, R., Neumann, J., Kirchner, T., Taketo, Makoto M., van den Brink, Gijs R., Sansom, Owen J., Arkan, Melek C., Greten, Florian R.. Intestinal Tumorigenesis Initiated by Dedifferentiation and Acquisition of Stem-Cell-like Properties. Cell, vol.152, no.1, 25-38.
  10. 10. Vermeulen, Louis, De Sousa E Melo, Felipe, van der Heijden, Maartje, Cameron, Kate, de Jong, Joan H., Borovski, Tijana, Tuynman, Jurriaan B., Todaro, Matilde, Merz, Christian, Rodermond, Hans, Sprick, Martin R., Kemper, Kristel, Richel, Dick J., Stassi, Giorgio, Medema, Jan Paul. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nature cell biology, vol.12, no.5, 468-476.
  11. 11. 10.1158/1538-7445.AM2012-5091 
  12. 12. Anticancer Res Chikazawa 30 2041 2010 Inhibition of Wnt signaling pathway decreases chemotherapy-resistant side-population colon cancer cells 
  13. 13. Mohammed, Maryam K., Shao, Connie, Wang, Jing, Wei, Qiang, Wang, Xin, Collier, Zachary, Tang, Shengli, Liu, Hao, Zhang, Fugui, Huang, Jiayi, Guo, Dan, Lu, Minpeng, Liu, Feng, Liu, Jianxiang, Ma, Chao, Shi, Lewis L., Athiviraham, Aravind, He, Tong-Chuan, Lee, Michael J.. Wnt/β-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance. Genes & diseases, vol.3, no.1, 11-40.
  14. 14. Uchida, Hiroshi, Yamazaki, Ken, Fukuma, Mariko, Yamada, Taketo, Hayashida, Tetsu, Hasegawa, Hirotoshi, Kitajima, Masaki, Kitagawa, Yuko, Sakamoto, Michiie. Overexpression of leucine-rich repeat-containing G protein-coupled receptor 5 in colorectal cancer. Cancer Science, vol.101, no.7, 1731-1737.
  15. 15. Emons, Georg, Spitzner, Melanie, Reineke, Sebastian, Moller, Janneke, Auslander, Noam, Kramer, Frank, Hu, Yue, Beissbarth, Tim, Wolff, Hendrik A., Rave-Frank, Margret, Heßmann, Elisabeth, Gaedcke, Jochen, Ghadimi, B. Michael, Johnsen, Steven A., Ried, Thomas, Grade, Marian. Chemoradiotherapy Resistance in Colorectal Cancer Cells is Mediated by Wnt/β-catenin Signaling. Molecular cancer research, vol.15, no.11, 1481-1490.
  16. 16. Kahn, Michael. Can we safely target the WNT pathway?. Nature reviews. Drug discovery, vol.13, no.7, 513-532.
  17. 17. Stem Cells Int Koury 2017 2925869 2017 10.1155/2017/2925869 Targeting signaling pathways in cancer stem cells for cancer treatment 
  18. 18. Cancers (Basel) de Sousa E Melo 8 60 2016 10.3390/cancers8070060 Wnt signaling in cancer stem cell biology 
  19. 19. Chen, Minyong, Wang, Jiangbo, Lu, Jiuyi, Bond, Michael C., Ren, Xiu-Rong, Lyerly, H. Kim, Barak, Larry S., Chen, Wei. The Anti-Helminthic Niclosamide Inhibits Wnt/Frizzled1 Signaling. Biochemistry, vol.48, no.43, 10267-10274.
  20. 20. Osada, Takuya, Chen, Minyong, Yang, Xiao Yi, Spasojevic, Ivan, Vandeusen, Jeffrey B., Hsu, David, Clary, Bryan M., Clay, Timothy M., Chen, Wei, Morse, Michael A., Lyerly, H. Kim. Antihelminth Compound Niclosamide Downregulates Wnt Signaling and Elicits Antitumor Responses in Tumors with Activating APC Mutations. Cancer research : the official organ of the American Association for Cancer Research, Inc, vol.71, no.12, 4172-4182.
  21. 21. Sack, U., Walther, W., Scudiero, D., Selby, M., Kobelt, D., Lemm, M., Fichtner, I., Schlag, P. M., Shoemaker, R. H., Stein, U.. Novel Effect of Antihelminthic Niclosamide on S100A4-Mediated Metastatic Progression in Colon Cancer. Journal of the National Cancer Institute: JNCI, vol.103, no.13, 1018-1036.
  22. 22. Lu, Wenyan, Lin, Cuihong, Roberts, Michael J., Waud, William R., Piazza, Gary A., Li, Yonghe. Niclosamide Suppresses Cancer Cell Growth By Inducing Wnt Co-Receptor LRP6 Degradation and Inhibiting the Wnt/β-Catenin Pathway. PloS one, vol.6, no.12, e29290-.
  23. 23. Londoño-Joshi, Angelina I., Arend, Rebecca C., Aristizabal, Laura, Lu, Wenyan, Samant, Rajeev S., Metge, Brandon J., Hidalgo, Bertha, Grizzle, William E., Conner, Michael, Forero-Torres, Andres, LoBuglio, Albert F., Li, Yonghe, Buchsbaum, Donald J.. Effect of Niclosamide on Basal-like Breast Cancers. Molecular cancer therapeutics, vol.13, no.4, 800-811.
  24. 24. Wieland, Anja, Trageser, Daniel, Gogolok, Sabine, Reinartz, Roman, Höfer, Heike, Keller, Mihaela, Leinhaas, Anke, Schelle, Ramona, Normann, Sabine, Klaas, Lil, Waha, Andreas, Koch, Philipp, Fimmers, Rolf, Pietsch, Torsten, Yachnis, Anthony T., Pincus, David W., Steindler, Dennis A., Brüstle, Oliver, Simon, Matthias, Glas, Martin, Scheffler, Björn. Anticancer Effects of Niclosamide in Human Glioblastoma. Clinical Cancer research : an official journal of the American Association for Cancer Research, vol.19, no.15, 4124-4136.
  25. 25. Li, Y., Li, P.K., Roberts, M.J., Arend, R.C., Samant, R.S., Buchsbaum, D.J.. Multi-targeted therapy of cancer by niclosamide: A new application for an old drug. Cancer letters, vol.349, no.1, 8-14.
  26. 26. Wang, Yu-Chi, Chao, Tai-Kuang, Chang, Cheng-Chang, Yo, Yi-Te, Yu, Mu-Hsien, Lai, Hung-Cheng. Drug Screening Identifies Niclosamide as an Inhibitor of Breast Cancer Stem-Like Cells. PloS one, vol.8, no.9, e74538-.
  27. 27. Theranostics Zhou 7 1447 2017 10.7150/thno.17451 The antihelminthic drug niclosamide effectively inhibits the malignant phenotypes of uveal melanoma in vitro and in vivo 
  28. 28. Oncotarget Arend 7 86803 2016 10.18632/oncotarget.13466 Niclosamide and its analogs are potent inhibitors of Wnt/β-catenin, mTOR and STAT3 signaling in ovarian cancer 
  29. 29. Jang, Gyu-Beom, Hong, In-Sun, Kim, Ran-Ju, Lee, Su-Youn, Park, Se-Jin, Lee, Eun-Sook, Park, Jung Hyuck, Yun, Chi-Ho, Chung, Jae-Uk, Lee, Kyoung-June, Lee, Hwa-Yong, Nam, Jeong-Seok. Wnt/β-Catenin Small-Molecule Inhibitor CWP232228 Preferentially Inhibits the Growth of Breast Cancer Stem-like Cells. Cancer research : the official organ of the American Association for Cancer Research, Inc, vol.75, no.8, 1691-1702.
  30. 30. O’Connell, Malaney R., Sarkar, Shubhashish, Luthra, Gurinder K., Okugawa, Yoshinaga, Toiyama, Yuji, Gajjar, Aakash H., Qiu, Suimin, Goel, Ajay, Singh, Pomila. Epigenetic changes and alternate promoter usage by human colon cancers for expressing DCLK1-isoforms: Clinical Implications. Scientific reports, vol.5, 14983-.
  31. 31. 10.1002/9781119013143 O'Sullivan B Brierley JD D'Cruz A Fey M Pollock RE Vermorken J UICC manual of clinical oncology. Chichester: Wiley-Blackwell; 2015. p. 788-90. 
  32. 32. Goodpaster, Tracy, Legesse-Miller, Aster, Hameed, Meera R., Aisner, Seena C., Randolph-Habecker, Julie, Coller, Hilary A.. An Immunohistochemical Method for Identifying Fibroblasts in Formalin-fixed, Paraffin-embedded Tissue. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society, vol.56, no.4, 347-358.
  33. 33. Oncotarget Kim 7 20395 2016 10.18632/oncotarget.7954 CWP232228 targets liver cancer stem cells through Wnt/β-catenin signaling: a novel therapeutic approach for liver cancer treatment 
  34. 34. Jang, Gyu-Beom, Kim, Ji-Young, Cho, Sung-Dae, Park, Ki-Soo, Jung, Ji-Youn, Lee, Hwa-Yong, Hong, In-Sun, Nam, Jeong-Seok. Blockade of Wnt/β-catenin signaling suppresses breast cancer metastasis by inhibiting CSC-like phenotype. Scientific reports, vol.5, 12465-.
  35. 35. Dis Markers Wang 35 395 2013 10.1155/2013/983981 Increased LEF1 expression and decreased Notch2 expression are strong predictors of poor outcomes in colorectal cancer patients 
  36. 36. Engels, Bart M., Schouten, Theo G., van Dullemen, Joost, Gosens, Ilse, Vreugdenhil, Erno. Functional differences between two DCLK splice variants. Brain research. Molecular brain research, vol.120, no.2, 103-114.
  37. 37. Omori, Yoshihiro, Suzuki, Mikio, Ozaki, Kouichi, Harada, Yosuke, Nakamura, Yusuke, Takahashi, Ei-ichi, Fujiwara, T.. Expression and chromosomal localization of KIAA0369, a putative kinase structurally related to Doublecortin. Journal of human genetics, vol.43, no.3, 169-177.
  38. 38. Shang, L., Kwon, Y.-G., Nandy, S., Lawrence, D. S., Edelman, A. M.. Catalytic and Regulatory Domains of Doublecortin Kinase-1. Biochemistry, vol.42, no.7, 2185-2194.
  39. 39. Nakanishi, Yuki, Seno, Hiroshi, Fukuoka, Ayumi, Ueo, Taro, Yamaga, Yuichi, Maruno, Takahisa, Nakanishi, Naoko, Kanda, Keitaro, Komekado, Hideyuki, Kawada, Mayumi, Isomura, Akihiro, Kawada, Kenji, Sakai, Yoshiharu, Yanagita, Motoko, Kageyama, Ryoichiro, Kawaguchi, Yoshiya, Taketo, Makoto M, Yonehara, Shin, Chiba, Tsutomu. Dclk1 distinguishes between tumor and normal stem cells in the intestine. Nature genetics, vol.45, no.1, 98-103.
  40. 40. Sci Rep Tharmalingam 8 3701 2018 10.1038/s41598-018-22037-x Repurposing the anthelmintic drug niclosamide to combat Helicobacter pylori 
  41. 41. Chembiochem Barini 19 425 2018 10.1002/cbic.201700500 The anthelmintic drug niclosamide and its analogues activate the Parkinson's disease associated protein kinase PINK1 
  42. 42. Wu, Chang-Jer, Jan, Jia-Tsrong, Chen, Chi-Min, Hsieh, Hsing-Pang, Hwang, Der-Ren, Liu, Hwan-Wun, Liu, Chiu-Yi, Huang, Hui-Wen, Chen, Su-Chin, Hong, Cheng-Fong, Lin, Ren-Kuo, Chao, Yu-Sheng, Hsu, John T. A.. Inhibition of Severe Acute Respiratory Syndrome Coronavirus Replication by Niclosamide. Antimicrobial agents and chemotherapy, vol.48, no.7, 2693-2696.
  43. 43. Clin Transl Med Abdullah 2 3 2013 10.1186/2001-1326-2-3 Mechanisms of chemoresistance in cancer stem cells 
  44. 44. Mol Cancer Chandrakesan 16 30 2017 10.1186/s12943-017-0594-y Dclk1, a tumor stem cell marker, regulates pro-survival signaling and self-renewal of intestinal tumor cells 
  45. 45. Chandrakesan P Panneerselvam J Qu D Weygant N May R Bronze M Regulatory roles of Dclk1 in epithelial mesenchymal transition and cancer stem cells. J Carcinog Mutagen 2016;7:257. 
  46. 46. Int J Cancer Liu 142 2068 2018 10.1002/ijc.31232 DCLK1 promotes epithelial-mesenchymal transition via the PI3K/Akt/NF-κB pathway in colorectal cancer 
  47. 47. In Vivo Takiyama 32 365 2018 DCLK1 expression in colorectal polyps increases with the severity of dysplasia 
  48. 48. Sarkar, Shubhashish, O'Connell, Malaney R., Okugawa, Yoshinaga, Lee, Brian S., Toiyama, Yuji, Kusunoki, Masato, Daboval, Robert D., Goel, Ajay, Singh, Pomila. FOXD3 Regulates CSC Marker, DCLK1-S, and Invasive Potential: Prognostic Implications in Colon Cancer. Molecular cancer research, vol.15, no.12, 1678-1691.
  49. 49. Lab Invest Sarkar 97 1245 2017 10.1038/labinvest.2017.40 A novel antibody against cancer stem cell biomarker, DCLK1-S, is potentially useful for assessing colon cancer risk after screening colonoscopy 
  50. 50. Thun, Michael J., Henley, S. Jane, Patrono, Carlo. Nonsteroidal Anti-inflammatory Drugs as Anticancer Agents: Mechanistic, Pharmacologic, and Clinical Issues. Journal of the National Cancer Institute: JNCI, vol.94, no.4, 252-266.

DOI 인용 스타일

"" 핵심어 질의응답