최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기International journal of remote sensing, v.40 no.1, 2019년, pp.51 - 71
Ma, Jong-Won (School of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea) , Nguyen, Cong-Hieu (School of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea) , Lee, Kyungdo (National Institute of Agricultural Science, RDA, Jeonju-si, Jeollabuk-do, South Korea) , Heo, Joon (School of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea)
초록이 없습니다.
Ali, A.M., Thind, H.S., Sharma, S., Varinderpal-Singh,. Prediction of dry direct-seeded rice yields using chlorophyll meter, leaf color chart and GreenSeeker optical sensor in northwestern India. Field crops research, vol.161, 11-15.
Alvarez, R.. Predicting average regional yield and production of wheat in the Argentine Pampas by an artificial neural network approach. European journal of agronomy : the journal of the European Society for Agronomy, vol.30, no.2, 70-77.
Bengio, Y.. Learning Deep Architectures for AI. Foundations and trends in machine learning, vol.2, no.1, 1-127.
Italian Journal of Remote Sensing/Rivista Italiana Di Telerilevamento Boschetti M. 63 43 3 2011
Busseti, E., I. Osband, and S. Wong. 2012. “Deep Learning for Time Series Modeling.” Technical report , CS 229, Machine Learning, Stanford University.
Turkish Journal of Agriculture and Forestry Cheng Q. 579 35 6 2011
Chung, Sang-Ok, Nkomozepi, Temba. Uncertainty of paddy irrigation requirement estimated from climate change projections in the Geumho river basin, Korea. Paddy and water environment : journal of the International Society of Paddy and Water Environment Engineering, vol.10, no.3, 175-185.
10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2
Dahl, G. E., Dong Yu, Li Deng, Acero, A.. Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition. IEEE transactions on audio, speech, and language processing, vol.20, no.1, 30-42.
Fortin, Jérôme G., Anctil, François, Parent, Léon-Étienne, Bolinder, Martin A.. Site-specific early season potato yield forecast by neural network in Eastern Canada. Precision agriculture, vol.12, no.6, 905-923.
Gonzalez-Sanchez, Alberto, Frausto-Solis, Juan, Ojeda-Bustamante, Waldo. Predictive ability of machine learning methods for massive crop yield prediction. Spanish journal of agricultural research = Revista de investigación agraria : SJAR, vol.12, no.2, 313-328.
Guo, William W., Xue, Heru. An incorporative statistic and neural approach for crop yield modelling and forecasting. Neural computing & applications, vol.21, no.1, 109-117.
Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., Lew, M.S.. Deep learning for visual understanding: A review. Neurocomputing, vol.187, 27-48.
Huang, Jingfeng, Wang, Xiuzhen, Li, Xinxing, Tian, Hanqin, Pan, Zhuokun. Remotely Sensed Rice Yield Prediction Using Multi-Temporal NDVI Data Derived from NOAA's-AVHRR. PloS one, vol.8, no.8, e70816-.
JI, B., SUN, Y., YANG, S., WAN, J.. Artificial neural networks for rice yield prediction in mountainous regions. The Journal of agricultural science, vol.145, no.3, 249-261.
Jiang, D., Yang, X., Clinton, N., Wang, N.. An artificial neural network model for estimating crop yields using remotely sensed information. International journal of remote sensing, vol.25, no.9, 1723-1732.
Kaul, Monisha, Hill, Robert L., Walthall, Charles. Artificial neural networks for corn and soybean yield prediction. Agricultural systems, vol.85, no.1, 1-18.
Yihyun Kim, Hoonyol Lee, Sukyoung Hong. Continuous Monitoring of Rice Growth With a Stable Ground-Based Scatterometer System. IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society, vol.10, no.4, 831-835.
Kouadio, Louis, Duveiller, Grégory, Djaby, Bakary, El Jarroudi, Moussa, Defourny, Pierre, Tychon, Bernard. Estimating regional wheat yield from the shape of decreasing curves of green area index temporal profiles retrieved from MODIS data. International journal of applied earth observation and geoinformation : ITC journal, vol.18, 111-118.
Kuri, F., Murwira, A., Murwira, K.S., Masocha, M.. Predicting maize yield in Zimbabwe using dry dekads derived from remotely sensed Vegetation Condition Index. International journal of applied earth observation and geoinformation : ITC journal, vol.33, 39-46.
Introduction to Neural Networks: Design. Theory, and Applications Lawrence J. 1994
LeCun, Yann, Bengio, Yoshua, Hinton, Geoffrey. Deep learning. Nature, vol.521, no.7553, 436-444.
Li, Ainong, Liang, Shunlin, Wang, Angsheng, Qin, Jun. Estimating Crop Yield from Multi-temporal Satellite Data Using Multivariate Regression and Neural Network Techniques. Photogrammetric engineering and remote sensing, vol.73, no.10, 1149-1157.
Li, Weijia, Fu, Haohuan, Yu, Le, Gong, Peng, Feng, Duole, Li, Congcong, Clinton, Nicholas. Stacked Autoencoder-based deep learning for remote-sensing image classification: a case study of African land-cover mapping. International journal of remote sensing, vol.37, no.23, 5632-5646.
Li, Yan, Liao, Qifang, Li, Xia, Liao, Shengdong, Chi, Guobin, Peng, Shaolin. Towards an operational system for regional-scale rice yield estimation using a time-series of Radarsat ScanSAR images. International journal of remote sensing, vol.24, no.21, 4207-4220.
Transactions of the ASAE Liu J. 705 44 3 2001 10.13031/2013.6097
Lobell, David B., Asner, Gregory P., Ortiz-Monasterio, J.Ivan, Benning, Tracy L.. Remote sensing of regional crop production in the Yaqui Valley, Mexico: estimates and uncertainties. Agriculture, ecosystems & environment, vol.94, no.2, 205-220.
IEEE Transactions on Intelligent Transportation Systems Lv Y. 865 16 2 2015
Mosleh, Mostafa K., Hassan, Quazi K., Chowdhury, Ehsan H.. Application of Remote Sensors in Mapping Rice Area and Forecasting Its Production: A Review. Sensors, vol.15, no.1, 769-791.
Remote Sensing of Environment Myneni R. B. 3 51 1992
Noureldin, N.A., Aboelghar, M.A., Saudy, H.S., Ali, A.M.. Rice yield forecasting models using satellite imagery in Egypt. The Egyptian journal of remote sensing and space sciences, vol.16, no.1, 125-131.
Park, S.J., Hwang, C.S., Vlek, P.L.G.. Comparison of adaptive techniques to predict crop yield response under varying soil and land management conditions. Agricultural systems, vol.85, no.1, 59-81.
Prasad, Anup K., Chai, Lim, Singh, Ramesh P., Kafatos, Menas. Crop yield estimation model for Iowa using remote sensing and surface parameters. International journal of applied earth observation and geoinformation : ITC journal, vol.8, no.1, 26-33.
Prasad, A. K., Singh, R. P., Tare, V., Kafatos, M.. Use of vegetation index and meteorological parameters for the prediction of crop yield in India. International journal of remote sensing, vol.28, no.23, 5207-5235.
Rahnemoonfar, Maryam, Sheppard, Clay. Deep Count: Fruit Counting Based on Deep Simulated Learning. Sensors, vol.17, no.4, 905-.
Reeves, M. C., Zhao, M., Running, S. W.. Usefulness and limits of MODIS GPP for estimating wheat yield. International journal of remote sensing, vol.26, no.7, 1403-1421.
Tian, Zengshan, Jin, Yue, Zhou, Mu, Wu, Zipeng, Li, Ze. Wi-Fi/MARG Integration for Indoor Pedestrian Localization. Sensors, vol.16, no.12, 2100-.
Journal of Indian Geophysical Union Sarma A. A. L. N. 89 12 2 2008
Saruta, K., Hirai, Y., Tanaka, K., Inoue, E., Okayasu, T., Mitsuoka, M.. Predictive models for yield and protein content of brown rice using support vector machine. Computers and electronics in agriculture, vol.99, 93-100.
Savin, I. Yu., Isaev, V. A.. Rice yield forecast based on satellite and meteorological data. Russian agricultural sciences, vol.36, no.6, 424-427.
Setiyono, Tri, Quicho, Emma, Gatti, Luca, Campos-Taberner, Manuel, Busetto, Lorenzo, Collivignarelli, Francesco, García-Haro, Francisco, Boschetti, Mirco, Khan, Nasreen, Holecz, Francesco. Spatial Rice Yield Estimation Based on MODIS and Sentinel-1 SAR Data and ORYZA Crop Growth Model. Remote sensing, vol.10, no.2, 293-.
Shao, Yun, Fan, Xiangtao, Liu, Hao, Xiao, Jianhua, Ross, S, Brisco, B, Brown, R, Staples, G. Rice monitoring and production estimation using multitemporal RADARSAT. Remote sensing of environment, vol.76, no.3, 310-325.
Shen, ShuangHe, Yang, ShenBin, Li, BingBai, Tan, BingXiang, Li, ZengYuan, Le Toan, Thuy. A scheme for regional rice yield estimation using ENVISAT ASAR data. Science in China. Series D, Earth sciences, vol.52, no.8, 1183-1194.
Smith, G. M., Fuller, R. M.. An integrated approach to land cover classification: an example in the Island of Jersey. International journal of remote sensing, vol.22, no.16, 3123-3142.
Son, Nguyen-Thanh, Chen, Chi-Farn, Chen, Cheng-Ru, Duc, Huynh-Ngoc, Chang, Ly-Yu. A Phenology-Based Classification of Time-Series MODIS Data for Rice Crop Monitoring in Mekong Delta, Vietnam. Remote sensing, vol.6, no.1, 135-156.
Son, N.T., Chen, C.F., Chen, C.R., Minh, V.Q., Trung, N.H.. A comparative analysis of multitemporal MODIS EVI and NDVI data for large-scale rice yield estimation. Agricultural and forest meteorology, vol.197, 52-64.
Su, S.Z., Liu, Z.H., Xu, S.P., Li, S.Z., Ji, R.. Sparse auto-encoder based feature learning for human body detection in depth image. Signal processing : the official publication of the European Association for Signal Processing (EURASIP), vol.112, 43-52.
Wang, Y.P., Chang, K.W., Chen, R.K., Lo, J.C., Shen, Y.. Large-area rice yield forecasting using satellite imageries. International journal of applied earth observation and geoinformation : ITC journal, vol.12, no.1, 27-35.
Seung-Hwan, Y., Jin-Yong, C., Sang-Hyun, L., Yun-Gyeong, O., Dong Koun, Y.. Climate change impacts on water storage requirements of an agricultural reservoir considering changes in land use and rice growing season in Korea. Agricultural water management, vol.117, 43-54.
Yun, Jin I. Predicting regional rice production in South Korea using spatial data and crop-growth modeling. Agricultural systems, vol.77, no.1, 23-38.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.