$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Regional-scale rice-yield estimation using stacked auto-encoder with climatic and MODIS data: a case study of South Korea

International journal of remote sensing, v.40 no.1, 2019년, pp.51 - 71  

Ma, Jong-Won (School of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea) ,  Nguyen, Cong-Hieu (School of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea) ,  Lee, Kyungdo (National Institute of Agricultural Science, RDA, Jeonju-si, Jeollabuk-do, South Korea) ,  Heo, Joon (School of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea)

초록이 없습니다.

참고문헌 (57)

  1. Ali, A.M., Thind, H.S., Sharma, S., Varinderpal-Singh,. Prediction of dry direct-seeded rice yields using chlorophyll meter, leaf color chart and GreenSeeker optical sensor in northwestern India. Field crops research, vol.161, 11-15.

  2. Alvarez, R.. Predicting average regional yield and production of wheat in the Argentine Pampas by an artificial neural network approach. European journal of agronomy : the journal of the European Society for Agronomy, vol.30, no.2, 70-77.

  3. 10.1002/rob.2017.34.issue-6 

  4. Bengio, Y.. Learning Deep Architectures for AI. Foundations and trends in machine learning, vol.2, no.1, 1-127.

  5. Greedy Layer-Wise Training of Deep Networks Bengio Y. 2007 10.7551/mitpress/7503.003.0024 

  6. Italian Journal of Remote Sensing/Rivista Italiana Di Telerilevamento Boschetti M. 63 43 3 2011 

  7. Busseti, E., I. Osband, and S. Wong. 2012. “Deep Learning for Time Series Modeling.” Technical report , CS 229, Machine Learning, Stanford University. 

  8. Turkish Journal of Agriculture and Forestry Cheng Q. 579 35 6 2011 

  9. Chung, Sang-Ok, Nkomozepi, Temba. Uncertainty of paddy irrigation requirement estimated from climate change projections in the Geumho river basin, Korea. Paddy and water environment : journal of the International Society of Paddy and Water Environment Engineering, vol.10, no.3, 175-185.

  10. 10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2 

  11. Dahl, G. E., Dong Yu, Li Deng, Acero, A.. Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition. IEEE transactions on audio, speech, and language processing, vol.20, no.1, 30-42.

  12. Fortin, Jérôme G., Anctil, François, Parent, Léon-Étienne, Bolinder, Martin A.. Site-specific early season potato yield forecast by neural network in Eastern Canada. Precision agriculture, vol.12, no.6, 905-923.

  13. Gonzalez-Sanchez, Alberto, Frausto-Solis, Juan, Ojeda-Bustamante, Waldo. Predictive ability of machine learning methods for massive crop yield prediction. Spanish journal of agricultural research = Revista de investigación agraria : SJAR, vol.12, no.2, 313-328.

  14. Guo, William W., Xue, Heru. An incorporative statistic and neural approach for crop yield modelling and forecasting. Neural computing & applications, vol.21, no.1, 109-117.

  15. Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., Lew, M.S.. Deep learning for visual understanding: A review. Neurocomputing, vol.187, 27-48.

  16. 홍석영, 허지나, 안중배, 이지민, 민병걸, 이충근, 김이현, 이경도, 김선화, 김건엽, 심교문. MODIS NDVI와 기상자료를 이용한 우리나라 벼 수량 추정. 대한원격탐사학회지 = Korean journal of remote sensing, vol.28, no.5, 509-520.

  17. Huang, Jingfeng, Wang, Xiuzhen, Li, Xinxing, Tian, Hanqin, Pan, Zhuokun. Remotely Sensed Rice Yield Prediction Using Multi-Temporal NDVI Data Derived from NOAA's-AVHRR. PloS one, vol.8, no.8, e70816-.

  18. JI, B., SUN, Y., YANG, S., WAN, J.. Artificial neural networks for rice yield prediction in mountainous regions. The Journal of agricultural science, vol.145, no.3, 249-261.

  19. Jiang, D., Yang, X., Clinton, N., Wang, N.. An artificial neural network model for estimating crop yields using remotely sensed information. International journal of remote sensing, vol.25, no.9, 1723-1732.

  20. Kaul, Monisha, Hill, Robert L., Walthall, Charles. Artificial neural networks for corn and soybean yield prediction. Agricultural systems, vol.85, no.1, 1-18.

  21. 김정수, 이수헌, 최홍수, 최국선, 조점덕, 정봉남. 2007년 우리나라 주요 작물 바이러스병 발생 상황. Research in plant disease = 식물병연구, vol.14, no.1, 1-9.

  22. Kim, Nari, Lee, Yang-Won. Machine Learning Approaches to Corn Yield Estimation Using Satellite Images and Climate Data: A Case of Iowa State. 한국측량학회지 = Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, vol.34, no.4, 383-390.

  23. Yihyun Kim, Hoonyol Lee, Sukyoung Hong. Continuous Monitoring of Rice Growth With a Stable Ground-Based Scatterometer System. IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society, vol.10, no.4, 831-835.

  24. Kouadio, Louis, Duveiller, Grégory, Djaby, Bakary, El Jarroudi, Moussa, Defourny, Pierre, Tychon, Bernard. Estimating regional wheat yield from the shape of decreasing curves of green area index temporal profiles retrieved from MODIS data. International journal of applied earth observation and geoinformation : ITC journal, vol.18, 111-118.

  25. Kuri, F., Murwira, A., Murwira, K.S., Masocha, M.. Predicting maize yield in Zimbabwe using dry dekads derived from remotely sensed Vegetation Condition Index. International journal of applied earth observation and geoinformation : ITC journal, vol.33, 39-46.

  26. Introduction to Neural Networks: Design. Theory, and Applications Lawrence J. 1994 

  27. LeCun, Yann, Bengio, Yoshua, Hinton, Geoffrey. Deep learning. Nature, vol.521, no.7553, 436-444.

  28. Li, Ainong, Liang, Shunlin, Wang, Angsheng, Qin, Jun. Estimating Crop Yield from Multi-temporal Satellite Data Using Multivariate Regression and Neural Network Techniques. Photogrammetric engineering and remote sensing, vol.73, no.10, 1149-1157.

  29. Li, Weijia, Fu, Haohuan, Yu, Le, Gong, Peng, Feng, Duole, Li, Congcong, Clinton, Nicholas. Stacked Autoencoder-based deep learning for remote-sensing image classification: a case study of African land-cover mapping. International journal of remote sensing, vol.37, no.23, 5632-5646.

  30. Li, Yan, Liao, Qifang, Li, Xia, Liao, Shengdong, Chi, Guobin, Peng, Shaolin. Towards an operational system for regional-scale rice yield estimation using a time-series of Radarsat ScanSAR images. International journal of remote sensing, vol.24, no.21, 4207-4220.

  31. Transactions of the ASAE Liu J. 705 44 3 2001 10.13031/2013.6097 

  32. Lobell, David B., Asner, Gregory P., Ortiz-Monasterio, J.Ivan, Benning, Tracy L.. Remote sensing of regional crop production in the Yaqui Valley, Mexico: estimates and uncertainties. Agriculture, ecosystems & environment, vol.94, no.2, 205-220.

  33. IEEE Transactions on Intelligent Transportation Systems Lv Y. 865 16 2 2015 

  34. Mosleh, Mostafa K., Hassan, Quazi K., Chowdhury, Ehsan H.. Application of Remote Sensors in Mapping Rice Area and Forecasting Its Production: A Review. Sensors, vol.15, no.1, 769-791.

  35. Remote Sensing of Environment Myneni R. B. 3 51 1992 

  36. 은코모제피 템바, 정상옥. 우리나라 미래의 논 벼 생산량과 관개요구량 모델링. 한국농공학회논문집 = Journal of the Korean Society of Agricultural Engineers, vol.56, no.1, 31-40.

  37. Noureldin, N.A., Aboelghar, M.A., Saudy, H.S., Ali, A.M.. Rice yield forecasting models using satellite imagery in Egypt. The Egyptian journal of remote sensing and space sciences, vol.16, no.1, 125-131.

  38. 10.5539/jas.v4n3p45 

  39. Park, S.J., Hwang, C.S., Vlek, P.L.G.. Comparison of adaptive techniques to predict crop yield response under varying soil and land management conditions. Agricultural systems, vol.85, no.1, 59-81.

  40. Prasad, Anup K., Chai, Lim, Singh, Ramesh P., Kafatos, Menas. Crop yield estimation model for Iowa using remote sensing and surface parameters. International journal of applied earth observation and geoinformation : ITC journal, vol.8, no.1, 26-33.

  41. Prasad, A. K., Singh, R. P., Tare, V., Kafatos, M.. Use of vegetation index and meteorological parameters for the prediction of crop yield in India. International journal of remote sensing, vol.28, no.23, 5207-5235.

  42. Rahnemoonfar, Maryam, Sheppard, Clay. Deep Count: Fruit Counting Based on Deep Simulated Learning. Sensors, vol.17, no.4, 905-.

  43. Reeves, M. C., Zhao, M., Running, S. W.. Usefulness and limits of MODIS GPP for estimating wheat yield. International journal of remote sensing, vol.26, no.7, 1403-1421.

  44. Tian, Zengshan, Jin, Yue, Zhou, Mu, Wu, Zipeng, Li, Ze. Wi-Fi/MARG Integration for Indoor Pedestrian Localization. Sensors, vol.16, no.12, 2100-.

  45. Journal of Indian Geophysical Union Sarma A. A. L. N. 89 12 2 2008 

  46. Saruta, K., Hirai, Y., Tanaka, K., Inoue, E., Okayasu, T., Mitsuoka, M.. Predictive models for yield and protein content of brown rice using support vector machine. Computers and electronics in agriculture, vol.99, 93-100.

  47. Savin, I. Yu., Isaev, V. A.. Rice yield forecast based on satellite and meteorological data. Russian agricultural sciences, vol.36, no.6, 424-427.

  48. Setiyono, Tri, Quicho, Emma, Gatti, Luca, Campos-Taberner, Manuel, Busetto, Lorenzo, Collivignarelli, Francesco, García-Haro, Francisco, Boschetti, Mirco, Khan, Nasreen, Holecz, Francesco. Spatial Rice Yield Estimation Based on MODIS and Sentinel-1 SAR Data and ORYZA Crop Growth Model. Remote sensing, vol.10, no.2, 293-.

  49. Shao, Yun, Fan, Xiangtao, Liu, Hao, Xiao, Jianhua, Ross, S, Brisco, B, Brown, R, Staples, G. Rice monitoring and production estimation using multitemporal RADARSAT. Remote sensing of environment, vol.76, no.3, 310-325.

  50. Shen, ShuangHe, Yang, ShenBin, Li, BingBai, Tan, BingXiang, Li, ZengYuan, Le Toan, Thuy. A scheme for regional rice yield estimation using ENVISAT ASAR data. Science in China. Series D, Earth sciences, vol.52, no.8, 1183-1194.

  51. Smith, G. M., Fuller, R. M.. An integrated approach to land cover classification: an example in the Island of Jersey. International journal of remote sensing, vol.22, no.16, 3123-3142.

  52. Son, Nguyen-Thanh, Chen, Chi-Farn, Chen, Cheng-Ru, Duc, Huynh-Ngoc, Chang, Ly-Yu. A Phenology-Based Classification of Time-Series MODIS Data for Rice Crop Monitoring in Mekong Delta, Vietnam. Remote sensing, vol.6, no.1, 135-156.

  53. Son, N.T., Chen, C.F., Chen, C.R., Minh, V.Q., Trung, N.H.. A comparative analysis of multitemporal MODIS EVI and NDVI data for large-scale rice yield estimation. Agricultural and forest meteorology, vol.197, 52-64.

  54. Su, S.Z., Liu, Z.H., Xu, S.P., Li, S.Z., Ji, R.. Sparse auto-encoder based feature learning for human body detection in depth image. Signal processing : the official publication of the European Association for Signal Processing (EURASIP), vol.112, 43-52.

  55. Wang, Y.P., Chang, K.W., Chen, R.K., Lo, J.C., Shen, Y.. Large-area rice yield forecasting using satellite imageries. International journal of applied earth observation and geoinformation : ITC journal, vol.12, no.1, 27-35.

  56. Seung-Hwan, Y., Jin-Yong, C., Sang-Hyun, L., Yun-Gyeong, O., Dong Koun, Y.. Climate change impacts on water storage requirements of an agricultural reservoir considering changes in land use and rice growing season in Korea. Agricultural water management, vol.117, 43-54.

  57. Yun, Jin I. Predicting regional rice production in South Korea using spatial data and crop-growth modeling. Agricultural systems, vol.77, no.1, 23-38.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로