$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Effect of nanofluid formation methods on behaviors of boiling bubbles

International journal of heat and mass transfer, v.135, 2019년, pp.1312 - 1318  

Park, Hanwook (Department of Medical and Mechatronics Engineering, Soonchunhyang University) ,  Lee, Sang Joon (Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH)) ,  Jung, Sung Yong (Department of Mechanical Engineering, Chosun University)

Abstract AI-Helper 아이콘AI-Helper

Abstract Understanding the boiling heat transfer characteristics of nanofluid suspensions containing nanoparticles is one of the challenging issues in the heat transfer research field. The addition of nanoparticles modifies both the surface characteristics and the thermo-physical properties of the ...

주제어

참고문헌 (51)

  1. Carey 2018 Liquid Vapor Phase Change Phenomena: An Introduction to The Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment 

  2. Int. J. Heat Fluid Flow Hetsroni 25 5 841 2004 10.1016/j.ijheatfluidflow.2004.05.005 Boiling enhancement with environmentally acceptable surfactants 

  3. J. Heat Transf. Judd 98 4 623 1976 10.1115/1.3450610 A comprehensive model for nucleate pool boiling heat transfer including microlayer evaporation 

  4. Rohsenow 1951 A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids 

  5. J. Enhanc. Heat Transf. Wasekar 6 2-4 1999 A review of enhanced heat transfer in nucleate pool boiling of aqueous surfactant and polymeric solutions 

  6. J. Heat Transf. Wasekar 122 4 708 2000 10.1115/1.1316785 Pool boiling heat transfer in aqueous solutions of an anionic surfactant 

  7. Int. J. Heat Mass Transf. Wasekar 45 3 483 2002 10.1016/S0017-9310(01)00174-0 The influence of additive molecular weight and ionic nature on the pool boiling performance of aqueous surfactant solutions 

  8. J. Heat Transf. Wu 117 2 526 1995 10.1115/1.2822558 Enhancement of nucleate boiling heat transfer and depression of surface tension by surfactant additives 

  9. J. Heat Transf. Yang 105 1 190 1983 10.1115/1.3245541 Pool boiling of dilute surfactant solutions 

  10. Chem. Eng. Res. Des. Yang 79 4 409 2001 10.1205/026387601750282337 On the criteria of nucleate pool boiling enhancement by surfactant addition to water 

  11. Int. J. Heat Mass Transf. Pioro 47 23 5033 2004 10.1016/j.ijheatmasstransfer.2004.06.019 Nucleate pool-boiling heat transfer. I: review of parametric effects of boiling surface 

  12. J. Synch. Radiat. Jung 21 2 424 2014 10.1107/S1600577513034760 Simultaneous measurement of bubble size, velocity and void fraction in two-phase bubbly flows with time-resolved X-ray imaging 

  13. Int. J. Heat Mass Transf. Park 128 443 2019 10.1016/j.ijheatmasstransfer.2018.09.015 X-ray imaging analysis on behaviors of boiling bubbles in nanofluids 

  14. Nanoscale Res. Lett. Barber 6 1 280 2011 10.1186/1556-276X-6-280 A review on boiling heat transfer enhancement with nanofluids 

  15. Nanoscale Res. Lett. Cieslinski 6 1 220 2011 10.1186/1556-276X-6-220 Pool boiling of water-Al2O3 and water-Cu nanofluids on horizontal smooth tubes 

  16. Int. J. Heat Mass Transf. Das 46 5 851 2003 10.1016/S0017-9310(02)00348-4 Pool boiling characteristics of nano-fluids 

  17. Int. J. Multiph. Flow Das 29 8 1237 2003 10.1016/S0301-9322(03)00105-8 Pool boiling of nano-fluids on horizontal narrow tubes 

  18. Int. J. Heat Mass Transf. Kwark 53 5-6 972 2010 10.1016/j.ijheatmasstransfer.2009.11.018 Pool boiling characteristics of low concentration nanofluids 

  19. IOSR-JMCE Mali 11 43 2014 10.9790/1684-11264348 Review on flow boiling heat transfer enhancement with nanofluids 

  20. Int. J. Heat Mass Transf. Quan 108 32 2017 10.1016/j.ijheatmasstransfer.2016.11.098 An experimental investigation on wettability effects of nanoparticles in pool boiling of a nanofluid 

  21. Period. Polytech.-Chem. Salari 60 2 106 2016 Boiling thermal performance of TiO2 aqueous nanofluids as a coolant on a disc copper block 

  22. Int. Commun. Heat Mass Sarafraz 70 75 2016 10.1016/j.icheatmasstransfer.2015.12.008 Critical heat flux and pool boiling heat transfer analysis of synthesized zirconia aqueous nano-fluids 

  23. Int. J. Heat Mass Transf. Taylor 52 23-24 5339 2009 10.1016/j.ijheatmasstransfer.2009.06.040 Pool boiling of nanofluids: comprehensive review of existing data and limited new data 

  24. Mater. Lett. Tsai 58 9 1461 2004 10.1016/j.matlet.2003.10.009 Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance 

  25. Powder Technol. Vafaei 277 181 2015 10.1016/j.powtec.2015.02.040 Nanofluid pool boiling heat transfer phenomenon 

  26. Int. J. Heat Mass Transf. Vassallo 47 2 407 2004 10.1016/S0017-9310(03)00361-2 Pool boiling heat transfer experiments in silica-water nano-fluids 

  27. J. Nanoparticle Res. Wen 7 2-3 265 2005 10.1007/s11051-005-3478-9 Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids 

  28. Appl. Therm. Eng. Xu 65 1-2 34 2014 10.1016/j.applthermaleng.2013.12.077 Influences of nanoparticles on pool boiling heat transfer in porous metals 

  29. Appl. Phys. Lett. You 83 16 3374 2003 10.1063/1.1619206 Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer 

  30. Int. J. Heat Mass Transf. Bang 48 12 2407 2005 10.1016/j.ijheatmasstransfer.2004.12.047 Boiling heat transfer performance and phenomena of Al2O3-water nano-fluids from a plain surface in a pool 

  31. J. Appl. Fluid Mch. Sarafraz 8 651 2015 10.18869/acadpub.jafm.67.223.19404 Upward flow boiling to DI-water and Cuo nanofluids inside the concentric annuli 

  32. Appl. Therm. Eng. Sarafraz 95 433 2016 10.1016/j.applthermaleng.2015.11.071 On the fouling formation of functionalized and non-functionalized carbon nanotube nano-fluids under pool boiling condition 

  33. Chem. Biochem. Eng. Q Nikkhah 29 3 405 2015 10.15255/CABEQ.2014.2069 Application of spherical copper oxide (II) water nano-fluid as a potential coolant in a boiling annular heat exchanger 

  34. Period. Polytech-chem. Salari 60 4 252 2016 10.3311/PPch.9324 Boiling heat transfer of alumina nano-fluids: role of nanoparticle deposition on the boiling heat transfer coefficient 

  35. Appl. Therm. Eng. Sarafraz 138 552 2018 10.1016/j.applthermaleng.2018.04.075 Flow boiling heat transfer to MgO-therminol 66 heat transfer fluid: experimental assessment and correlation development 

  36. Period. Polytech.-Chem. Sarafraz 57 71 2013 10.3311/PPch.2173 Nucleate pool boiling heat transfer of binary nano mixtures under atmospheric pressure around a smooth horizontal cylinder 

  37. J. Appl. Phys. Buongiorno 106 9 094312 2009 10.1063/1.3245330 A benchmark study on the thermal conductivity of nanofluids 

  38. Heat Mass Transf. Vafaei 48 2 349 2012 10.1007/s00231-011-0887-4 Convective heat transfer of aqueous alumina nanosuspensions in a horizontal mini-channel 

  39. Nanotechnology Vafaei 20 18 185702 2009 10.1088/0957-4484/20/18/185702 The effect of nanoparticles on the liquid-gas surface tension of Bi2Te3 nanofluids 

  40. Int. J. Heat Mass Transf. Lee 51 11-12 2651 2008 10.1016/j.ijheatmasstransfer.2007.10.026 Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles 

  41. J. Colloid. Interface Sci. Megias-Alguacil 353 2 512 2011 10.1016/j.jcis.2010.09.087 Contact angle and adsorption behavior of carboxylic acids on α-Al2O3 surfaces 

  42. Int. J. Heat Mass Transf. Jeong 51 11-12 3025 2008 10.1016/j.ijheatmasstransfer.2007.09.023 Wettability of heated surfaces under pool boiling using surfactant solutions and nano-fluids 

  43. Exp. Therm. Fluid Sci. Naik 90 132 2018 10.1016/j.expthermflusci.2017.09.013 Heat transfer enhancement using non-Newtonian nanofluids in a shell and helical coil heat exchanger 

  44. Exp. Therm Fluid Sci. Cieśliński 59 258 2014 10.1016/j.expthermflusci.2014.06.004 Sessile droplet contact angle of water-Al2O3, water-TiO2 and water-Cu nanofluids 

  45. Langmuir Lim 31 21 5827 2015 10.1021/acs.langmuir.5b00799 Nanofluids alter the surface wettability of solids 

  46. Nanoscale Res. Lett. Sridhara 6 1 456 2011 10.1186/1556-276X-6-456 Al2O3-based nanofluids: a review 

  47. Adv. Powder Technol. Satone 19 3 293 2008 10.1163/156855208X294645 Solidification mechanism of the sediment formed by particle settling-analysis of the final state of the sediment 

  48. Nanoscale. Res. Lett. Suttiponparnit 6 1 27 2011 10.1007/s11671-010-9772-1 Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties 

  49. IEEE Trans. Pattern Anal. Mach. Intell. Canny 6 679 1986 10.1109/TPAMI.1986.4767851 A computational approach to edge detection 

  50. Patt. Recognit. Ballard 13 2 111 1981 10.1016/0031-3203(81)90009-1 Generalizing the Hough transform to detect arbitrary shapes 

  51. J. Synch. Radiat. Jung 20 3 498 2013 10.1107/S0909049513001933 Time-resolved X-ray PIV technique for diagnosing opaque biofluid flow with insufficient X-ray fluxes 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로