$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Triboelectric vibration sensor for a human-machine interface built on ubiquitous surfaces

Nano energy, v.59, 2019년, pp.689 - 696  

He, Qiang (Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Department of Optoelectronic Engineering, Chongqing University) ,  Wu, Yufen (College of Physics and Electronic Engineering, Chongqing Normal University) ,  Feng, Zhiping (Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University) ,  Sun, Chenchen (Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Department of Optoelectronic Engineering, Chongqing University) ,  Fan, Wenjing (Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Department of Optoelectronic Engineering, Chongqing University) ,  Zhou, Zhihao (Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Department of Optoelectronic Engineering, Chongqing University) ,  Meng, Keyu (Key Laboratory of Optoelectronic Technol) ,  Fan, Endong ,  Yang, Jin

Abstract AI-Helper 아이콘AI-Helper

Abstract Human-machine interfaces enable the exchange of information between people and machines, which plays a crucial role in artificial intelligence. In this field, sensors based on magnetism, electricity, mechanics, and optics are used to construct interactive interfaces and have an important r...

주제어

참고문헌 (35)

  1. Weiss 2010 Proc. 23nd Annu. ACM Symp. User Interface Softw. Technol. - UIST’10 Madgets: actuating widgets on interactive tabletops 

  2. Weiss 2011 UIST’11 Proc. 24th Annu. ACM Symp. User Interface Softw. Technol. FingerFlux : near-surface haptic feedback on tabletops 

  3. Sci. Adv. Pu 3 1 2017 10.1126/sciadv.1700694 Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator 

  4. Nano Energy Pu 2018 10.1016/j.nanoen.2018.10.044 Rotation sensing and gesture control of a robot joint via triboelectric quantization sensor 

  5. Nano Energy Deng 2019 10.1016/j.nanoen.2018.10.049 Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures 

  6. Wang 2016 Proc. 2016 ACM Interact. Surfaces Spaces EV-pen: leveraging electrovibration haptic feedback in pen interaction 

  7. Cho 2016 Proc. 29th Annu. Symp. User Interface Softw. Technol. - UIST’16 RealPen: providing realism in handwriting tasks on touch surfaces using auditory-tactile feedback 

  8. Adv. Energy Mater. Yang 2014 10.1002/aenm.201301322 Broadband vibrational energy harvesting based on a triboelectric nanogenerator 

  9. Despinoy 2014 Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) Comparative assessment of a novel optical human-machine interface for laparoscopic telesurgery 

  10. Nissler 2015 IEEE Int. Conf. Rehabil. Robot. OMG: Introducing optical myography as a new human machine interface for hand amputees 

  11. ACS Nano Roh 2015 10.1021/acsnano.5b01613 Stretchable, transparent, ultrasensitive, and patchable strain sensor for human-machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers 

  12. ACS Nano Cao 2018 10.1021/acsnano.8b02477 Screen-printed washable electronic textiles as self-powered touch/gesture tribo-sensors for intelligent human-machine interaction 

  13. Han 2017 Proc. 30th Annu. ACM Symp. User Interface Softw. Technol. - UIST’17 SoundCraft: enabling spatial interactions on smartwatches using hand generated acoustics 

  14. Wang 2014 Ubiquitous Keyboard for Small Mobile Devices: Harnessing Multipath Fading for Fine-Grained Keystroke Localization, MobiSys 

  15. Zhang 2018 Proc. 2018 CHI Conf. Hum. Factors Comput. Syst. - CHI’18 A. Sample, Wall++: room-scale interactive and context-aware sensing yang 

  16. Adv. Mater. Technol. Luo 2018 10.1002/admt.201700222 Textile-Enabled highly reproducible flexible pressure sensors for cardiovascular monitoring 

  17. Adv. Funct. Mater. Lin 2018 Large-scale and washable smart textiles based on triboelectric nanogenerator arrays for self-powered sleeping monitoring 

  18. Nano Energy Zhou 2018 10.1016/j.nanoen.2018.08.055 Wireless self-powered sensor networks driven by triboelectric nanogenerator for in-situ real time survey of environmental monitoring 

  19. Adv. Funct. Mater. Meng 2019 10.1002/adfm.201806388 Flexible weaving constructed self-powered pressure sensor enabling continuous diagnosis of cardiovascular disease and measurement of cuffless blood pressure 

  20. ACS Appl. Mater. Interfaces Chang 2018 Ultrasensitive and highly stable resistive pressure sensors with biomaterial-incorporated interfacial layers for wearable health-monitoring and human-machine interfaces 

  21. Adv. Funct. Mater. Lim 2015 Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures 

  22. Mater. Today Wang 2018 10.1016/j.mattod.2017.12.006 Deformable conductors for human-machine interface 

  23. Nat. Commun. Lee 2018 Transparent and attachable ionic communicators based on self-cleanable triboelectric nanogenerators 

  24. Adv. Mater. Technol. Lin 2018 10.1002/admt.201800144 Flexible timbo-like triboelectric nanogenerator as self-powered force and bend sensor for wireless and distributed landslide monitoring 

  25. ACS Nano Chen 2015 Personalized keystroke dynamics for self-powered human-machine interfacing 

  26. ACS Nano Yang 2014 Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing 

  27. Adv. Mater. Yang 2015 Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition 

  28. Liu 2017 2017 14th annu. IEEE int. Conf. Sensing, commun. Networking, SECON 2017 VibSense: sensing touches on ubiquitous surfaces through vibration 

  29. Mater. Today Wu 2018 10.1016/j.mattod.2018.01.006 Keystroke dynamics enabled authentication and identification using triboelectric nanogenerator array 

  30. Rev. Fish Biol. Fish. Montgomery 1995 10.1007/BF01103813 Biology of the mechanosensory lateral line in fishes 

  31. Front. Neural Circuits Pujol-Martí 2013 10.3389/fncir.2013.00047 Developmental and architectural principles of the lateral-line neural map 

  32. Sci. Robot. Boutry 2018 10.1126/scirobotics.aau6914 A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics 

  33. Integr. Zool. Bleckmann 2009 10.1111/j.1749-4877.2008.00131.x Lateral line system of fish 

  34. J. Exp. Biol. Liao 2006 10.1242/jeb.02487 The role of the lateral line and vision on body kinematics and hydrodynamic preference of rainbow trout in turbulent flow 

  35. Bioscience Narins 1990 10.2307/1311263 Seismic communication in anuran amphibians 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로