최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기IEEE transactions on circuits and systems for video technology : a publication of the Circuits and Systems Society, v.29 no.3, 2019년, pp.800 - 814
Tu, Nguyen Anh (Department of Computer Science and Engineering, Kyung Hee University (Global Campus), Seoul, South Korea) , Huynh-The, Thien (Department of Computer Science and Engineering, Kyung Hee University (Global Campus), Seoul, South Korea) , Khan, Kifayat Ullah (Department of Computer Science and Engineering, Kyung Hee University (Global Campus), Seoul, South Korea) , Lee, Young-Koo (Department of Computer Science and Engineering, Kyung Hee University (Global Campus), Seoul, South Korea)
Action recognition from videos is an important area of computer vision research due to its various applications, ranging from visual surveillance to human–computer interaction. To address action recognition problems, this paper presents a framework that jointly models multiple complex actions...
Wang, J., Liu, P., She, M.F.H., Kouzani, A., Nahavandi, S.. Supervised learning probabilistic Latent Semantic Analysis for human motion analysis. Neurocomputing, vol.100, 134-143.
Tu, N.A., Dinh, D.L., Rasel, M.K., Lee, Y.K.. Topic modeling and improvement of image representation for large-scale image retrieval. Information sciences, vol.366, 99-120.
Rasiwasia, N., Vasconcelos, N.. Latent Dirichlet Allocation Models for Image Classification. IEEE transactions on pattern analysis and machine intelligence, vol.35, no.11, 2665-2679.
Proc 15th Conf Uncertainty Artif Intell Probabilistic latent semantic analysis hofmann 1999 289
Yang Wang, Mori, G.. Human Action Recognition by Semilatent Topic Models. IEEE transactions on pattern analysis and machine intelligence, vol.31, no.10, 1762-1774.
Niebles, Juan Carlos, Wang, Hongcheng, Fei-Fei, Li. Unsupervised Learning of Human Action Categories Using Spatial-Temporal Words. International journal of computer vision, vol.79, no.3, 299-318.
SENSORS Traffic behavior recognition using the pachinko allocation model thien 2015 10.3390/s150716040 15 16040
Peng, X., Zou, C., Qiao, Y., Peng, Q.. Action Recognition with Stacked Fisher Vectors. Lecture notes in computer science, vol.8693, 581-595.
Sekma, M., Mejdoub, M., Ben Amar, C.. Human action recognition based on multi-layer Fisher vector encoding method. Pattern recognition letters, vol.65, 37-43.
Laptev, Ivan. On Space-Time Interest Points. International journal of computer vision, vol.64, no.2, 107-123.
Peng, X., Wang, L., Qiao, Y., Peng, Q.. Boosting VLAD with Supervised Dictionary Learning and High-Order Statistics. Lecture notes in computer science, vol.8691, 660-674.
Limin Wang, Yu Qiao, Xiaoou Tang. Latent Hierarchical Model of Temporal Structure for Complex Activity Classification. IEEE transactions on image processing : a publication of the IEEE Signal Processing Society, vol.23, no.2, 810-822.
Borzeshi, Ehsan Zare, Perez Concha, Oscar, Xu, Richard Yi Da, Piccardi, Massimo. Joint Action Segmentation and Classification by an Extended Hidden Markov Model. IEEE signal processing letters, vol.20, no.12, 1207-1210.
Shi, Qinfeng, Cheng, Li, Wang, Li, Smola, Alex. Human Action Segmentation and Recognition Using Discriminative Semi-Markov Models. International journal of computer vision, vol.93, no.1, 22-32.
Kulkarni, Kaustubh, Evangelidis, Georgios, Cech, Jan, Horaud, Radu. Continuous Action Recognition Based on Sequence Alignment. International journal of computer vision, vol.112, no.1, 90-114.
J Mach Learn Res Distributed algorithms for topic models newman 2009 10 1801
J Mach Learn Res MedLDA: Maximum margin supervised topic models zhu 2012 13 2237
Very Deep Convolutional Networks for Large-scale Image Recognition simonyan 2014
UCF101: A dataset of 101 human actions classes from videos in the wild soomro 2012
Proc IEEE Int Conf Pattern Recognit Workshops UT-interaction dataset, ICPR contest on semantic description of human activities (SDHA) ryoo 2010 2 4
J Mach Learn Res Latent Dirichlet allocation blei 2003 3 993
Teh, Yee Whye, Jordan, Michael I, Beal, Matthew J, Blei, David M. Hierarchical Dirichlet Processes. Journal of the American Statistical Association, vol.101, no.476, 1566-1581.
Jegou, H., Perronnin, F., Douze, M., Sanchez, J., Perez, P., Schmid, C.. Aggregating Local Image Descriptors into Compact Codes. IEEE transactions on pattern analysis and machine intelligence, vol.34, no.9, 1704-1716.
Sánchez, Jorge, Perronnin, Florent, Mensink, Thomas, Verbeek, Jakob. Image Classification with the Fisher Vector: Theory and Practice. International journal of computer vision, vol.105, no.3, 222-245.
Wang, Heng, Kläser, Alexander, Schmid, Cordelia, Liu, Cheng-Lin. Dense Trajectories and Motion Boundary Descriptors for Action Recognition. International journal of computer vision, vol.103, no.1, 60-79.
Wang, Heng, Oneata, Dan, Verbeek, Jakob, Schmid, Cordelia. A Robust and Efficient Video Representation for Action Recognition. International journal of computer vision, vol.119, no.3, 219-238.
Niebles, J.C., Chen, C.-W., Fei-Fei, L.. Modeling Temporal Structure of Decomposable Motion Segments for Activity Classification. Lecture notes in computer science, vol.6312, 392-405.
Proc IEEE Int Conf Comput Vis Pattern Recognit Discriminative subvolume search for efficient action detection yuan 2009 2442
Sapienza, Michael, Cuzzolin, Fabio, Torr, Philip H.S.. Learning Discriminative Space-Time Action Parts from Weakly Labelled Videos. International journal of computer vision, vol.110, no.1, 30-47.
Proc IEEE Int Conf Comput Vis Beyond Gaussian pyramid: Multi-skip feature stacking for action recognition lan 2015 204
Gilbert, A, Illingworth, J, Bowden, R. Action Recognition Using Mined Hierarchical Compound Features. IEEE transactions on pattern analysis and machine intelligence, vol.33, no.5, 883-897.
Hou, R., Zamir, A.R., Sukthankar, R., Shah, M.. DaMN - Discriminative and Mutually Nearest: Exploiting Pairwise Category Proximity for Video Action Recognition. Lecture notes in computer science, vol.8691, 721-736.
Tran, Du, Torresani, Lorenzo. EXMOVES: Mid-level Features for Efficient Action Recognition and Video Analysis. International journal of computer vision, vol.119, no.3, 239-253.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.