최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기International journal of chemical engineering, v.2019, 2019년, pp.1 - 13
Zheng, Dan (Department of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, China) , Zou, Wei (Department of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, China) , Peng, Chuanfeng (Department of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, China) , Fu, Yuhang (Department of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, China) , Yan, Jie (Department of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, China) , Zhang, Fengzhen (Department of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, China)
A coupled numerical code of the Euler-Euler model and the population balance model (PBM) of the liquid-liquid dispersions in a spray fluidized bed extractor (SFBE) has been performed to investigate the hydrodynamic behavior. A classes method (CM) and two representatively numerical moment-based metho...
Gao, Z., Li, D., Buffo, A., Podgorska, W., Marchisio, D.L.. Simulation of droplet breakage in turbulent liquid-liquid dispersions with CFD-PBM: Comparison of breakage kernels. Chemical engineering science, vol.142, 277-288.
Qamar, S., Warnecke, G.. Analytical and numerical investigations of a batch crystallization model. Journal of computational and applied mathematics, vol.222, no.2, 715-731.
Qamar, Shamsul, Mukhtar, Safyan, Seidel-Morgenstern, Andreas, Elsner, Martin Peter. An efficient numerical technique for solving one-dimensional batch crystallization models with size-dependent growth rates. Chemical engineering science, vol.64, no.16, 3659-3667.
Balakin, B.V., Hoffmann, A.C., Kosinski, P.. Coupling STAR-CD with a population-balance technique based on the classes method. Powder technology, vol.257, 47-54.
Kumar, J., Peglow, M., Warnecke, G., Heinrich, S.. The cell average technique for solving multi-dimensional aggregation population balance equations. Computers & chemical engineering, vol.32, no.8, 1810-1830.
Liao, Y., Lucas, D.. A literature review on mechanisms and models for the coalescence process of fluid particles. Chemical engineering science, vol.65, no.10, 2851-2864.
Vik, Camilla Berge, Solsvik, Jannike, Hillestad, Magne, Jakobsen, Hugo A.. A multifluid-PBE model for simulation of mass transfer limited processes operated in bubble columns. Computers & chemical engineering, vol.110, 115-139.
Solsvik, J., Tangen, S., Jakobsen, H.A.. Evaluation of weighted residual methods for the solution of the pellet equations: The orthogonal collocation, Galerkin, tau and least-squares methods. Computers & chemical engineering, vol.58, 223-259.
Borner, M., Peglow, M., Tsotsas, E.. Derivation of parameters for a two compartment population balance model of Wurster fluidised bed granulation. Powder technology, vol.238, 122-131.
Terdenge, Lisa-Marie, Kossuch, Jan Arne, Schembecker, Gerhard, Wohlgemuth, Kerstin. Potential of gassing crystallization to control the agglomeration degree of crystalline products. Powder technology, vol.320, 386-396.
Jildeh, H.B., Hlawitschka, M.W., Attarakih, M., Bart, H.J.. Solution of Inverse Problem with the One Primary and One Secondary Particle Model (OPOSPM) Coupled with Computational Fluid Dynamics (CFD). Procedia engineering, vol.42, 1692-1710.
Yao, Y., Su, J.W., Luo, Z.H.. CFD-PBM modeling polydisperse polymerization FBRs with simultaneous particle growth and aggregation: The effect of the method of moments. Powder technology, vol.272, 142-152.
Line, A., Frances, C.. Discussion on DQMOM to solve a bivariate population balance equation applied to a grinding process. Powder technology, vol.295, 234-244.
Qamar, Shamsul, Seidel-Morgenstern, Andreas. An efficient numerical technique for solving multi-dimensional batch crystallization models with size independent growth rates. Computers & chemical engineering, vol.33, no.7, 1221-1226.
Han, L., Luo, H., Liu, Y.. A theoretical model for droplet breakup in turbulent dispersions. Chemical engineering science, vol.66, no.4, 766-776.
Drumm, C., Tiwari, S., Kuhnert, J., Bart, H.J.. Finite pointset method for simulation of the liquid-liquid flow field in an extractor. Computers & chemical engineering, vol.32, no.12, 2946-2957.
Marchisio, Daniele L., Fox, Rodney O.. Solution of population balance equations using the direct quadrature method of moments. Journal of aerosol science, vol.36, no.1, 43-73.
Liu, S.S., Xiao, W.D.. CFD-PBM coupled simulation of silicon CVD growth in a fluidized bed reactor: Effect of silane pyrolysis kinetic models. Chemical engineering science, vol.127, 84-94.
Drumm, C., Bart, H.-J.. Hydrodynamics in a RDC Extractor: Single and Two-Phase PIV Measurements and CFD Simulations. Chemical engineering & technology, vol.29, no.11, 1297-1302.
Attarakih, M.M., Drumm, C., Bart, H.J.. Solution of the population balance equation using the sectional quadrature method of moments (SQMOM). Chemical engineering science, vol.64, no.4, 742-752.
Pan, H., Chen, X.Z., Liang, X.F., Zhu, L.T., Luo, Z.H.. CFD simulations of gas-liquid-solid flow in fluidized bed reactors - A review. Powder technology, vol.299, 235-258.
Gaillard, J.P., Lalleman, S., Bertrand, M., Plasari, E.. Comparison of the Method of Classes and the Quadrature of Moment for the Modelling of Neodymium Oxalate Precipitation. Procedia chemistry, vol.21, 334-340.
Sun, L., Wang, S., Lu, H., Liu, G., Lu, H., Liu, Y., Feixiang, Z.. Simulations of configurational and granular temperatures of particles using DEM in roller conveyor. Powder technology, vol.268, 436-445.
Hosseinzadeh, Mostafa, Ghaemi, Ahad, Shirvani, Mansour. Hydrodynamic performance evaluation of a novel eductor liquid–liquid extractor using CFD modeling. Chemical engineering research & design : transactions of the Institution of Chemical Engineers, vol.126, 19-31.
Szablewski, W.. B. E. Launder and D. B. Spalding, Mathematical Models of Turbulence. 169 S. m. Abb. London/New York 1972. Academic Press. Preis geb. $ 7.50. Zeitschrift für angewandte mathematik und mechanik, vol.53, no.6, 424-424.
Sun, L., Xu, W., Lu, H., Liu, G., Zhang, Q., Tang, Q., Zhang, T.. Simulated configurational temperature of particles and a model of constitutive relations of rapid-intermediate-dense granular flow based on generalized granular temperature. International journal of multiphase flow, vol.77, 1-18.
Chekifi, Tawfiq. Computational study of droplet breakup in a trapped channel configuration using volume of fluid method. Flow measurement and instrumentation : FMI, vol.59, 118-125.
Coulaloglou, C.A., Tavlarides, L.L.. Description of interaction processes in agitated liquid-liquid dispersions. Chemical engineering science, vol.32, no.11, 1289-1297.
Zivkovic, V., Biggs, M. J., Glass, D. H.. Scaling of granular temperature in a vibrated granular bed. Physical review. E, Statistical, nonlinear, and soft matter physics, vol.83, no.3, 031308-.
Zheng, Dan, Li, Jun, Jin, Yang, Zou, Da, Zhu, Xinhua. Coupling of CFD with PBM for growth behavior of potassium sulphate in spray fluidized-bed crystallizer. Powder technology, vol.314, 427-441.
Sallam, Mai O., Vandenbosch, Guy A.E., Gielen, Georges, Soliman, Ezzeldin A.. Generalized mode solver for plasmonic transmission lines embedded in layered media based on the Method of Moments. Computer physics communications, vol.233, 1-15.
Dosta, Maksym, Heinrich, Stefan, Werther, Joachim. Fluidized bed spray granulation: Analysis of the system behaviour by means of dynamic flowsheet simulation. Powder technology, vol.204, no.1, 71-82.
Fan, Rong, Marchisio, Daniele L., Fox, Rodney O.. Application of the direct quadrature method of moments to polydisperse gas–solid fluidized beds. Powder technology, vol.139, no.1, 7-20.
McGraw, Robert. Description of Aerosol Dynamics by the Quadrature Method of Moments. Aerosol science and technology : the journal of the American Association for Aerosol Reserch, vol.27, no.2, 255-265.
Bannari, R., Kerdouss, F., Selma, B., Bannari, A., Proulx, P.. Three-dimensional mathematical modeling of dispersed two-phase flow using class method of population balance in bubble columns. Computers & chemical engineering, vol.32, no.12, 3224-3237.
Guo, Xiaofeng, Zhou, Qiang, Li, Jun, Chen, Caixia. Implementation of an improved bubble breakup model for TFM-PBM simulations of gas–liquid flows in bubble columns. Chemical engineering science, vol.152, 255-266.
63 59 1985 Minimum drop volume in liquid jet breakup
He, Yurong, Wang, Tianyu, Deen, Niels, van Sint Annaland, Martin, Kuipers, Hans, Wen, Dongsheng. Discrete particle modeling of granular temperature distribution in a bubbling fluidized bed. Particuology : Science and technology of particles, vol.10, no.4, 428-437.
Chen, H., Sun, Z., Song, X., Yu, J.. A pseudo-3D model with 3D accuracy and 2D cost for the CFD-PBM simulation of a pilot-scale rotating disc contactor. Chemical engineering science, vol.139, 27-40.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.