$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Effect of myocardial heterogeneity on ventricular electro-mechanical responses: a computational study 원문보기

Biomedical engineering online, v.18, 2019년, pp.23 -   

Dusturia, Nida (Department of IT Convergence Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, Gyeongbuk 39253 Republic of Korea) ,  Choi, Seong Wook (Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon, Republic of Korea) ,  Song, Kwang Soup (Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea) ,  Lim, Ki Moo (Department of IT Convergence Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, Gyeongbuk 39253 Republic of Korea)

EDISON 유발 논문

계산과학플랫폼 EDISON을 활용하여 발표된 논문

Abstract AI-Helper 아이콘AI-Helper

BackgroundThe heart wall exhibits three layers of different thicknesses: the outer epicardium, mid-myocardium, and inner endocardium. Among these layers, the mid-myocardium is typically the thickest. As indicated by preliminary studies, heart-wall layers exhibit various characteristics with regard t...

주제어

참고문헌 (41)

  1. 1. Khokhlova A Vikulova N Katsnelson L Iribe G Solovyova O Transmural cellular heterogeneity in myocardial electromechanics J Physiol Sci. 2018 68 4 387 413 10.1007/s12576-017-0541-0 28573594 

  2. 2. Tortora GJ Derrickson BH Principles of anatomy and physiology 2008 New York Wiley 

  3. 3. Shah S Gnanasegaran G Sundberg-Cohon J Buscombe JR The heart: anatomy, physiology and exercise physiology. Integrating cardiology for nuclear medicine physicians 2009 Berlin Springer 3 22 

  4. 4. Seemann G Sachse FB WEIß DL Dössel O Quantitative reconstruction of cardiac electromechanics in human myocardium J Cardiovasc Electrophysiol 2003 14 S219 S228 10.1046/j.1540.8167.90314.x 14760927 

  5. 5. Jalife J Delmar M Anumonwo J Berenfeld O Kalifa J Basic cardiac electrophysiology for the clinician 2011 New York Wiley 

  6. 6. Ten Tusscher K Noble D Noble P Panfilov A A model for human ventricular tissue Am J Physiol Heart Circ Physiol 2004 286 H1573 H1589 10.1152/ajpheart.00794.2003 14656705 

  7. 7. Xu C Xu L Gao Z Zhao S Zhang H Zhang Y Direct delineation of myocardial infarction without contrast agents using a joint motion feature learning architecture Med Image Anal 2018 50 82 94 10.1016/j.media.2018.09.001 30227385 

  8. 8. Bijnens B Claus P Weidemann F Strotmann J Sutherland GR Investigating cardiac function using motion and deformation analysis in the setting of coronary artery disease Circulation 2007 116 2453 2464 10.1161/CIRCULATIONAHA.106.684357 18025403 

  9. 9. Wilson LD Jennings MM Rosenbaum DS Point: M cells are present in the ventricular myocardium Heart Rhythm 2011 8 930 933 10.1016/j.hrthm.2011.01.026 21241824 

  10. 10. Akar FG Yan G-X Antzelevitch C Rosenbaum DS Unique topographical distribution of M cells underlies reentrant mechanism of torsade de pointes in the long-QT syndrome Circulation 2002 105 1247 1253 10.1161/hc1002.105231 11889021 

  11. 11. Yan G-X Shimizu W Antzelevitch C Characteristics and distribution of M cells in arterially perfused canine left ventricular wedge preparations Circulation 1998 98 1921 1927 10.1161/01.CIR.98.18.1921 9799214 

  12. 12. Strom M Wan X Poelzing S Ficker E Rosenbaum DS Gap junction heterogeneity as mechanism for electrophysiologically distinct properties across the ventricular wall Am J Physiol Heart Circ Physiol 2009 298 H787 H794 10.1152/ajpheart.00887.2009 20035026 

  13. 13. Ringenberg J Deo M Devabhaktuni V Berenfeld O Snyder B Boyers P Accurate reconstruction of 3D cardiac geometry from coarsely-sliced MRI Comput Methods Progr Biomed 2014 113 483 493 10.1016/j.cmpb.2013.11.013 

  14. 14. Chen J Zhang H Zhang W Du X Zhang Y Li S Correlated regression feature learning for automated right ventricle segmentation IEEE J Transl Eng Health Med 2018 6 1 10 

  15. 15. van Dam PM Gordon JP Laks MM Boyle NG Development of new anatomy reconstruction software to localize cardiac isochrones to the cardiac surface from the 12 lead ECG J Electrocardiol 2015 48 959 965 10.1016/j.jelectrocard.2015.08.036 26381797 

  16. 16. Zhu L Gao Y Appia VV Yezzi AJ Arepalli CD Faber TL Automatic delineation of the myocardial wall from CT images via shape segmentation and variational region growing IEEE Trans Biomed Eng 2013 60 2887 2895 10.1109/TBME.2012.2226242 23744658 

  17. 17. Histace A Matuszewski B Zhang Y Segmentation of myocardial boundaries in tagged cardiac MRI using active contours: a gradient-based approach integrating texture analysis J Biomed Imaging 2009 2009 4 

  18. 18. Zheng Y, Georgescu B, Vega-Higuera F, Comaniciu D. Left ventricle endocardium segmentation for cardiac CT volumes using an optimal smooth surface. In: Medical imaging 2009: image processing. Bellingham: International Society for Optics and Photonics; 2009. p. 72593V. 

  19. 19. Jeong DU Lim KM Influence of the KCNQ1 S140G mutation on human ventricular arrhythmogenesis and pumping performance: simulation study Front Physiol. 2018 9 926 10.3389/fphys.2018.00926 30108508 

  20. 20. Chen Z Niederer S Shanmugam N Sermesant M Rinaldi CA Cardiac computational modeling of ventricular tachycardia and cardiac resynchronization therapy: a clinical perspective Minerva Cardioangiol 2017 65 380 397 28215064 

  21. 21. Yuniarti AR Setianto F Marcellinus A Hwang HJ Choi SW Trayanova N Effect of KCNQ1 G229D mutation on cardiac pumping efficacy and reentrant dynamics in ventricles: computational study Int J Numer Methods Biomed Eng 2018 34 e2970 10.1002/cnm.2970 

  22. 22. Kerckhoffs RC Healy SN Usyk TP McCULLOCH AD Computational methods for cardiac electromechanics Proc IEEE 2006 94 769 783 10.1109/JPROC.2006.871772 

  23. 23. Janz RF Grimm AF Finite-element model for the mechanical behavior of the left ventricle: prediction of deformation in the potassium-arrested rat heart Circ Res 1972 30 244 252 10.1161/01.RES.30.2.244 5061321 

  24. 24. Arts T Reneman RS Veenstra PC A model of the mechanics of the left ventricle Ann Biomed Eng 1979 7 299 318 10.1007/BF02364118 547767 

  25. 25. Feit T Diastolic pressure–volume relations and distribution of pressure and fiber extension across the wall of a model left ventricle Biophys J 1979 28 143 166 10.1016/S0006-3495(79)85165-6 262444 

  26. 26. Bovendeerd P Arts T Huyghe J Van Campen D Reneman R Dependence of local left ventricular wall mechanics on myocardial fiber orientation: a model study J Biomech 1992 25 1129 1140 10.1016/0021-9290(92)90069-D 1400513 

  27. 27. Gurev V Lee T Constantino J Arevalo H Trayanova NA Models of cardiac electromechanics based on individual hearts imaging data Biomech Model Mechanobiol 2011 10 295 306 10.1007/s10237-010-0235-5 20589408 

  28. 28. Kerckhoffs RC Neal ML Gu Q Bassingthwaighte JB Omens JH McCulloch AD Coupling of a 3D finite element model of cardiac ventricular mechanics to lumped systems models of the systemic and pulmonic circulation Ann Biomed Eng 2007 35 1 18 10.1007/s10439-006-9212-7 17111210 

  29. 29. Lim KM Constantino J Gurev V Zhu R Shim EB Trayanova NA Comparison of the effects of continuous and pulsatile left ventricular-assist devices on ventricular unloading using a cardiac electromechanics model J Physiol Sci 2012 62 11 19 10.1007/s12576-011-0180-9 22076841 

  30. 30. Lim KM Hong S-B Lee BK Shim EB Trayanova N Computational analysis of the effect of valvular regurgitation on ventricular mechanics using a 3D electromechanics model J Physiol Sci 2015 65 159 164 10.1007/s12576-014-0353-4 25644379 

  31. 31. Trayanova NA Constantino J Gurev V Electromechanical models of the ventricles Am J Physiol Heart Circ Physiol 2011 301 H279 H286 10.1152/ajpheart.00324.2011 21572017 

  32. 32. Vadakkumpadan F Arevalo H Prassl AJ Chen J Kickinger F Kohl P Image-based models of cardiac structure in health and disease Wiley Interdiscip Rev Syst Biol Med 2010 2 489 506 10.1002/wsbm.76 20582162 

  33. 33. Vadakkumpadan F Rantner LJ Tice B Boyle P Prassl AJ Vigmond E Image-based models of cardiac structure with applications in arrhythmia and defibrillation studies J Electrocardiol 2009 42 157.e1–e10 10.1016/j.jelectrocard.2008.12.003 19181330 

  34. 34. Berenfeld O Jalife J Purkinje-muscle reentry as a mechanism of polymorphic ventricular arrhythmias in a 3-dimensional model of the ventricles Circ Res 1998 82 1063 1077 10.1161/01.RES.82.10.1063 9622159 

  35. 35. Wong KK Kelso RM Worthley S Sanders P Mazumdar J Abbott D Medical imaging and processing methods for cardiac flow reconstruction J Mech Med Biol 2009 9 1 20 10.1142/S0219519409002894 

  36. 36. Ten Tusscher K Panfilov A Cell model for efficient simulation of wave propagation in human ventricular tissue under normal and pathological conditions Phys Med Biol 2006 51 6141 10.1088/0031-9155/51/23/014 17110776 

  37. 37. Stern MD Theory of excitation–contraction coupling in cardiac muscle Biophys J 1992 63 497 517 10.1016/S0006-3495(92)81615-6 1330031 

  38. 38. Guccione JM Costa KD McCulloch AD Finite element stress analysis of left ventricular mechanics in the beating dog heart J Biomech 1995 28 1167 1177 10.1016/0021-9290(94)00174-3 8550635 

  39. 39. Usyk TP LeGrice IJ McCulloch AD Computational model of three-dimensional cardiac electromechanics Comput Vis Sci 2002 4 249 257 10.1007/s00791-002-0081-9 

  40. 40. Usyk T Mazhari R McCulloch A Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle J Elast Phys Sci Solids 2000 61 143 164 

  41. 41. Rice JJ Wang F Bers DM De Tombe PP Approximate model of cooperative activation and crossbridge cycling in cardiac muscle using ordinary differential equations Biophys J 2008 95 2368 2390 10.1529/biophysj.107.119487 18234826 

LOADING...

관련 콘텐츠

원문 보기

원문 URL 링크

*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로