$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Artificial Neural Network for Vertical Displacement Prediction of a Bridge from Strains (Part 1): Girder Bridge under Moving Vehicles 원문보기

Applied sciences, v.9 no.14, 2019년, pp.2881 -   

Moon, Hyun Su (Department of Civil and Environmental Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea) ,  Ok, Suyeol (Hyundai Engineering & Construction, 75 Yulgok-ro, Jongno-gu, Seoul 03058, Korea) ,  Chun, Pang-jo (Institute of Engineering Innovation, School of Engineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 790-8577, Japan) ,  Lim, Yun Mook (Department of Civil and Environmental Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea)

EDISON 유발 논문

계산과학플랫폼 EDISON을 활용하여 발표된 논문

Abstract AI-Helper 아이콘AI-Helper

A real-time prediction method using a multilayer feedforward neural network is proposed for estimating vertical dynamic displacements of a bridge from the longitudinal strains of the bridge when vehicles pass across it. A numerical model for an existing five-girder bridge spanning 36 m proved by act...

참고문헌 (60)

  1. Ribeiro Non-contact measurement of the dynamic displacement of railway bridges using an advanced video-based system Eng. Struct. 2014 10.1016/j.engstruct.2014.04.051 75 164 

  2. Park 3D displacement measurement model for health monitoring of structures using a motion capture system Measurement 2015 10.1016/j.measurement.2014.09.063 59 352 

  3. Zhao Bridge displacement monitoring method based on laser projection-sensing technology Sensors 2015 10.3390/s150408444 15 8444 

  4. Feng Vision-based multipoint displacement measurement for structural health monitoring Struct. Control Health Monit. 2016 10.1002/stc.1819 23 876 

  5. Huang Displacement monitoring and modelling of a high-speed railway bridge using C-band Sentinel-1 data ISPRS J. Photogramm. Remote Sens. 2017 10.1016/j.isprsjprs.2017.03.016 128 204 

  6. 10.3390/s16020257 Sekiya, H., Kimura, K., and Miki, C. (2016). Technique for determining bridge displacement response using MEMS accelerometers. Sensors, 16. 

  7. 10.3390/s18040970 Vicente, M.A., Gonzalez, D.C., Minguez, J., and Schumacher, T. (2018). A novel laser and video-based displacement transducer to monitor bridge deflections. Sensors, 18. 

  8. Lee Evaluation of bridge load carrying capacity based on dynamic displacement measurement using real-time image processing techniques Steel Struct. 2006 6 377 

  9. Lee Development and application of a vision-based displacement measurement system for structural health monitoring of civil structures Smart Struct. Syst. 2007 10.12989/sss.2007.3.3.373 3 373 

  10. Olaszek Investigation of the dynamic characteristics of bridge structures using a computer vision method Measurement 1999 10.1016/S0263-2241(99)00006-8 25 227 

  11. Nakamura GPS measurement of wind-induced suspension bridge girder displacements J. Struct. Eng. 2000 10.1061/(ASCE)0733-9445(2000)126:12(1413) 126 1413 

  12. Brown When bridges move: GPS-based deflection monitoring Sensors 2006 4 16 

  13. Lee A vision-based system for remote sensing of bridge displacement Ndt E Int. 2006 10.1016/j.ndteint.2005.12.003 39 425 

  14. Sanchez A new approach for structural monitoring of large dams with a three-dimensional laser scanner Sensors 2008 10.3390/s8095866 8 5866 

  15. Fukuda Cost-effective vision-based system for monitoring dynamic response of civil engineering structures Struct. Control Health Monit. 2009 10.1002/stc.360 17 918 

  16. Park Vision-based displacement measurement method for high-rise building structures using partitioning approach Ndt E Int. 2010 10.1016/j.ndteint.2010.06.009 43 642 

  17. Im Summary Review of GPS technology for structural health monitoring J. Struct. Eng. 2013 10.1061/(ASCE)ST.1943-541X.0000475 139 1653 

  18. Kohut Monitoring of a civil structure’s state based on noncontact measurements Struct. Health Monit. 2013 10.1177/1475921713487397 12 411 

  19. Psimoulis Measuring deflections for a short-span railway bridge using a robotic total station J. Bridge Eng. 2013 10.1061/(ASCE)BE.1943-5592.0000334 18 182 

  20. Li High-precision measurement of tool-tip displacement using strain gauges in precision flexible line boring Mech. Syst. Signal. Proc. 1999 10.1006/mssp.1999.1223 13 531 

  21. Kang Estimation of dynamic structural displacements using fiber Bragg grating strains sensors J. Sound. Vib. 2007 10.1016/j.jsv.2007.04.037 305 534 

  22. Tommy Vertical displacement measurements for bridges using optical fiber sensors and CCD cameras-a preliminary study Struct. Health. Monit. 2009 10.1177/1475921708102108 8 243 

  23. Wang Strain modes based dynamic displacement estimation of beam structures with strain sensors Smart. Mater. Struct. 2014 10.1088/0964-1726/23/12/125045 23 125045 

  24. Xia Deformation monitoring of a super-tall structure using real-time strain data Eng. Struct. 2014 10.1016/j.engstruct.2014.02.009 67 29 

  25. Xu Deflection estimation of bending beam structures using fiber Bragg grating strain sensors Adv. Struct. Eng. 2015 10.1260/1369-4332.18.3.395 18 395 

  26. Cho Displacement estimation of bridge structure using data fusion of acceleration and strain measurement incorporating finite element model Smart. Struct. Syst. 2015 10.12989/sss.2015.15.3.645 15 645 

  27. Chandwani Modeling slump of ready mix concrete using genetic algorithms assisted training of Artificial Neural Networks Expert Syst. Appl. 2015 10.1016/j.eswa.2014.08.048 42 885 

  28. Hamzehie Developing a feed forward multilayer neural network model for prediction of CO2 solubility in blended aqueous amine solutions J. Nat. Gas Sci. Eng. 2014 10.1016/j.jngse.2014.07.022 21 19 

  29. Rejvani Designing an artificial neural network to predict dynamic viscosity of aqueous nanofluid of TiO2 using experimental data Int. Commun. Heat Mass Transf. 2016 10.1016/j.icheatmasstransfer.2016.04.002 75 192 

  30. Shayannejad Artificial neural network for modeling nitrate pollution of groundwater in marginal area of Zayandeh-rood River, Isfahan, Iran KSCE J. Civ. Eng. 2017 10.1007/s12205-016-0572-8 21 134 

  31. Ramasamy Wind speed prediction in the mountainous region of India using an artificial neural network model Renew. Energy 2015 10.1016/j.renene.2015.02.034 80 338 

  32. Yadav Solar radiation prediction using Artificial Neural Network techniques: A review Renew. Sustain. Energy Rev. 2014 10.1016/j.rser.2013.08.055 33 772 

  33. Yan Evaluation and prediction of bond strength of GFRP-bar reinforced concrete using artificial neural network optimized with genetic algorithm Compos. Struct. 2017 10.1016/j.compstruct.2016.11.068 161 441 

  34. Zain Prediction of surface roughness in the end milling machining using Artificial Neural Network Expert Syst. Appl. 2010 10.1016/j.eswa.2009.07.033 37 1755 

  35. Elsheikh Artificial neural network based forward kinematics solution for planar parallel manipulators passing through singular configuration Adv. Robot. Autom. 2013 2 2 

  36. Karabacak Artificial neural networks for controlling wind-PV power systems: A review Renew. Sustain. Energy Rev. 2014 10.1016/j.rser.2013.08.070 29 804 

  37. Kashyap Solar radiation forecasting with multiple parameters neural networks Renew. Sustain. Energy Rev. 2015 10.1016/j.rser.2015.04.077 49 825 

  38. Dindarloo Prediction of fuel consumption of mining dump trucks: A neural networks approach Appl. Energy 2015 10.1016/j.apenergy.2015.04.064 151 77 

  39. Jani Application of artificial neural network for predicting performance of solid desiccant cooling system-A review Renew. Sustain. Energy Rev. 2017 10.1016/j.rser.2017.05.169 80 352 

  40. Elsheikh Modeling of solar energy systems using artificial neural network: A comprehensive review Solar Energy 2019 10.1016/j.solener.2019.01.037 180 622 

  41. Chun, B.-J. (2010). Skewed Bridge Behaviors: Experimental, Analytical, and Numerical Analysis. [Doctoral Dissertation, Wayne State University]. 

  42. Ok, S.Y. (2012). A Study on Estimation Method of Dynamic Bridge Displacement by Using Artificial Neural Network. [Master’s Thesis, Yonsei University]. 

  43. Ok Estimation of dynamic vertical displacement using artificial neural network and axial strain in girder bridge J. Korean Soc. Civ. Eng. 2014 34 1655 

  44. 10.3390/app9091936 Chiara, B., and Marco, F. (2019). Reliability of Field Experiments, Analytical Methods and Pedestrian’s Perception Scales for the Vibration Serviceability Assessment of an In-Service Glass Walkway. Appl. Sci., 9. 

  45. Zuo Structured H2 optimization of vehicle suspensions based on multi-wheel models Veh. Syst. Dyn. 2003 10.1076/vesd.40.5.351.17914 40 351 

  46. Ahmed The improvement of ride comfort of a city bus which is fabricated on a lorry chassis Eng. Res. J. 1997 53 19 

  47. Li, H. (2005). Dynamic Response of Highway Bridges Subjected to Heavy Vehicles. [Doctoral Dissertation, Florida State University]. 

  48. Mathew, T.V. (2014). Vehicle arrival models: Headway. Transportation Systems Engineering, Indian Institute of Technology. 

  49. May, A.D. (1990). Traffic Flow Fundamentals, Prentice Hall. 

  50. McCulloch A logical calculus of the ideas immanent in nervous activity Bull. Math. Biophys. 1943 10.1007/BF02478259 5 115 

  51. Rezaei Vertical displacement estimation in roof and floor of an underground powerhouse cavern Eng. Fail. Anal. 2018 10.1016/j.engfailanal.2018.03.010 90 290 

  52. Jha Experimental investigation of active vibration control using neural networks and piezoelectric actuators Smart Mater. Struct. 2002 10.1088/0964-1726/11/1/313 11 115 

  53. Benardos Optimizing feedforward artificial neural network architecture Eng. Appl. Artif. Intell. 2007 10.1016/j.engappai.2006.06.005 20 365 

  54. Khoshjavan Estimation of hardgrove grindability index (HGI) based on the coal chemical properties using artificial neural networks Orient. J. Chem. 2010 26 1271 

  55. Zhang Forecasting with artificial neural networks: The state of the art Int. J. Forecast. 1998 10.1016/S0169-2070(97)00044-7 14 35 

  56. Basheer Artificial neural networks: Fundamentals, computing, design, and application J. Microbiol. Methods 2000 10.1016/S0167-7012(00)00201-3 43 3 

  57. Nalbant The experimental investigation of the effects of uncoated, PVD- and CVD-coated cemented carbide inserts and cutting parameters on surface roughness in CNC turning and its prediction using artificial neural networks Robot. Comput. Integr. Manuf. 2009 10.1016/j.rcim.2007.11.004 25 211 

  58. Beale, M.H., Hagan, M.T., and Demuth, H.B. (2018). Deep learning toolbox. R2018b User’s Guide, The MathWorks, Inc. 

  59. Ding An optimizing BP neural network algorithm based on genetic algorithm Artif. Intell. Rev. 2011 10.1007/s10462-011-9208-z 36 153 

  60. Karul Case studies on the use of neural networks in eutrophication modeling Ecol. Model. 2000 10.1016/S0304-3800(00)00360-4 134 145 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로