$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Effect of Different Drying Methods on Nutrient Quality of the Yellow Mealworm ( Tenebrio molitor L.) 원문보기

Insects, v.10 no.4, 2019년, pp.84 -   

Kröncke, Nina (Institute of Food Technology and Bioprocess Engineering, University of Applied Sciences Bremerhaven, An der Karlstadt 8, 27568 Bremerhaven, Germany) ,  Grebenteuch, Sandra (nkroencke@hs-bremerhaven.de (N.K.)) ,  Keil, Claudia (rbenning@hs-bremerhaven.de (R.B.)) ,  Demtröder, Sebastian (Department Food Chemistry and Analytics, Institute of Food Technology and Food Chemistry, TU Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany) ,  Kroh, Lothar (sandra.grebenteuch@tu-berlin.de (S.G.)) ,  Thünemann, Andreas F. (sdemtroeder@hs-bremerhaven.de (S.D.)) ,  Benning, Rainer (Department Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry, TU Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany) ,  Haase, Hajo (c.keil@tu-berlin.de (C.K.))

Abstract AI-Helper 아이콘AI-Helper

Yellow mealworm (Tenebrio molitor L.) represents a sustainable source of proteins and fatty acids for feed and food. Industrial production of mealworms necessitates optimized processing techniques, where drying as the first postharvest procedure is of utmost importance for the quality of the final p...

주제어

참고문헌 (73)

  1. 1. United Nations World Population Prospects: The 2015 Revision, Key Findings and Advance Tables Working Paper No ESA/P/WP241 United Nations New York, NY, USA 2015 

  2. 2. Van Huis A. Potential of insects as food and feed in assuring food security Annu. Rev. Entomol. 2013 58 563 583 10.1146/annurev-ento-120811-153704 23020616 

  3. 3. Rumpold B.A. Schlüter O.K. Potential and challenges of insects as an innovative source for food and feed production Innov. Food Sci. Emerg. Technol. 2013 17 1 11 10.1016/j.ifset.2012.11.005 

  4. 4. EFSA Risk profile related to production and consumption of insects as food and feed EFSA J. 2015 13 4257 10.2903/j.efsa.2015.4257 

  5. 5. Melis R. Braca A. Mulas G. Sanna R. Spada S. Serra G. Fadda M.L. Roggio T. Uzzau S. Anedda R. Effect of freezing and drying processes on the molecular traits of edible yellow mealworm Innov. Food Sci. Emerg. Technol. 2018 48 138 149 10.1016/j.ifset.2018.06.003 

  6. 6. Smetana S. Palanisamy M. Mathys A. Heinz V. Sustainability of insect use for feed and food: Life cycle assessment perspective J. Clean. Prod. 2016 137 741 751 10.1016/j.jclepro.2016.07.148 

  7. 7. Grau T. Vilcinskas A. Joop G. Sustainable farming of the mealworm Tenebrio molitor for the production of food and feed Zeitschrift fur Naturforsch C 2017 72 337 349 10.1515/znc-2017-0033 

  8. 8. Oonincx D.G.A.B. van Itterbeeck J. Heetkamp M.J.W. van den Brand H. van Loon J.J.A. van Huis A. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption PLoS ONE 2010 5 e14445 10.1371/journal.pone.0014445 21206900 

  9. 9. Oonincx D.G.A.B. de Boer I.J.M. Environmental impact of the production of mealworms as a protein source for humans—A life cycle assessment PLoS ONE 2012 7 e51145 10.1371/journal.pone.0051145 23284661 

  10. 10. Miglietta P.P. de Leo F. Ruberti M. Massari S. Mealworms for food: A water footprint perspective Water 2015 7 6190 6203 10.3390/w7116190 

  11. 11. Oonincx D.G.A.B. van Broekhoven S. van Huis A. van Loon J.J.A. Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products PLoS ONE 2015 10 e0144601 10.1371/journal.pone.0144601 26699129 

  12. 12. Lenaerts S. van der Borght M. Callens A. van Campenhout L. Suitability of microwave drying for mealworms ( Tenebrio molitor ) as alternative to freeze drying: Impact on nutritional quality and colour Food Chem. 2018 254 129 136 10.1016/j.foodchem.2018.02.006 29548432 

  13. 13. Vandeweyer D. Lenaerts S. Callens A. van Campenhout L. Effect of blanching followed by refrigerated storage or industrial microwave drying on the microbial load of yellow mealworm larvae ( Tenebrio molitor ) Food Control 2017 71 311 314 10.1016/j.foodcont.2016.07.011 

  14. 14. Bonazzi C. Dumoulin E. Quality changes in food materials as influenced by drying processes Modern Drying Technology Tsotsas E. Mujumdar A.S. Wiley-VCH Verlag GmbH & Co. KGaA Weinheim, Germany 2011 1 20 

  15. 15. Maillard L.-C. Action des Acides Amines sur les Sucres; Formation des Mélanoidines par voie Méthodique C. R. Acad. Sci. 1912 154 66 68 

  16. 16. Ledl F. Schleicher E. New Aspects of the Maillard Reaction in Foods and in the Human Body Angew. Chem. Int. Ed. 1990 29 565 594 10.1002/anie.199005653 

  17. 17. Barbosa-Cánovas G.V. Fontana A.J. Jr. Schmidt S.J. Labuza T.P. Water Activity in Foods: Fundamentals and Applications 1st ed. Blackwell Publishing Ltd. Oxford, UK 2007 

  18. 18. Ghosh S. Lee S.M. Jung C. Meyer-Rochow V.B. Nutritional composition of five commercial edible insects in South Korea J. Asia Pac. Entomol. 2017 20 686 694 10.1016/j.aspen.2017.04.003 

  19. 19. Van Huis A. van Itterbeeck J. Klunder H. Mertens E. Halloran A. Muir G. Vantomme P. Future Prospects for Food and Feed Security Food and Agriculture Organization of the United Nations Rome, Italy 2013 Volume 171 1 201 

  20. 20. Nowak V. Persijn D. Rittenschober D. Charrondiere U.R. Review of food composition data for edible insects Food Chem. 2016 193 39 46 10.1016/j.foodchem.2014.10.114 26433285 

  21. 21. Mwangi M.N. Oonincx D.G.A.B. Stouten T. Veenenbos M. Melse-Boonstra A. Dicke M. van Loon J.J. Insects as sources of iron and zinc in human nutrition Nutr. Res. Rev. 2018 31 248 255 10.1017/S0954422418000094 30033906 

  22. 22. Tao J. Li Y.O. Edible insects as a means to address global malnutrition and food insecurity issues Food Qual. Saf. 2018 2 17 26 10.1093/fqsafe/fyy001 

  23. 23. Rumpold B.A. Schlüter O.K. Nutritional composition and safety aspects of edible insects Mol. Nutr. Food Res. 2013 57 802 823 10.1002/mnfr.201200735 23471778 

  24. 24. Fombong F.T. van Der Borght M. Vanden Broeck J. Influence of freeze-drying and oven-drying post blanching on the nutrient composition of the edible insect Ruspolia differens Insects 2017 8 102 10.3390/insects8030102 28926949 

  25. 25. Latunde-Dada G.O. Yang W. Vera Aviles M. In vitro iron availability from insects and sirloin beef J. Agric. Food Chem. 2016 64 8420 8424 10.1021/acs.jafc.6b03286 27731991 

  26. 26. Moses J.A. Norton T. Alagusundaram K. Tiwari B.K. Novel drying techniques for the food industry Food Eng. Rev. 2014 6 43 55 10.1007/s12393-014-9078-7 

  27. 27. Kröncke N. Böschen V. Woyzichovski J. Demtröder S. Benning R. Comparison of suitable drying processes for mealworms ( Tenebrio molitor ) Innov. Food Sci. Emerg. Technol. 2018 50 20 25 10.1016/j.ifset.2018.10.009 

  28. 28. Purschke B. Brüggen H. Scheibelberger R. Jäger H. Effect of pre-treatment and drying method on physico-chemical properties and dry fractionation behaviour of mealworm larvae ( Tenebrio molitor L.) Eur. Food Res. Technol. 2018 244 269 280 10.1007/s00217-017-2953-8 

  29. 29. Verband Deutscher Landwirtschaftlicher Untersuchungs-und Forschungsanstalten VDLUFA methodenbuch III Band III—Die Chemische Untersuchung von Futtermitteln VDLUFA-Verlag Bonn, Germany 2013 2190 

  30. 30. De Oliveira L.M. da Silva Lucas A.J. Oliveira F.G. Evaluation of color Tenebrio molitor Larvae by different methods of dehydration J. Food Process. Technol. 2018 9 10 13 10.4172/2157-7110.1000758 

  31. 31. Butte W. Rapid method for the determination of fatty acid profiles from fats and oils using trimethylsulphonium hydroxide for transesterification J. Chromatogr. B 1983 261 142 145 10.1016/S0021-9673(01)87931-0 

  32. 32. Wang Y. McCaffrey J. Norwood D.L. Recent advances in headspace gas chromatography J. Liq. Chromatogr. Relat. Technol. 2008 31 1823 1851 Available online: http://www.tandfonline.com/doi/abs/10.1080/10826070802129092 (accessed on 19 March 2019) 10.1080/10826070802129092 

  33. 33. Böhmert L. Girod M. Hansen U. Maul R. Knappe P. Niemann B. Weidner S.M. Thünemann A.F. Lampen A. Analytically monitored digestion of silver nanoparticles and their toxicity on human intestinal cells Nanotoxicology 2014 8 631 642 10.3109/17435390.2013.815284 23763544 

  34. 34. Osimani A. Garofalo C. Milanović V. Taccari M. Cardinali F. Aquilanti L. Pasquini M. Mozzon M. Raffaelli N. Ruschioni S. Insight into the proximate composition and microbial diversity of edible insects marketed in the European Union Eur. Food Res. Technol. 2017 243 1157 1171 10.1007/s00217-016-2828-4 

  35. 35. Tzompa-Sosa D.A. Yi L. van Valenberg H.J.F. van Boekel M.A.J.S. Lakemond C.M.M. Insect lipid profile: Aqueous versus organic solvent-based extraction methods Food Res. Int. 2014 62 1087 1094 10.1016/j.foodres.2014.05.052 

  36. 36. Taha A.Y. Metherel A.H. Stark K.D. Comparative analysis of standardised and common modifications of methods for lipid extraction for the determination of fatty acids Food Chem. 2012 134 427 433 10.1016/j.foodchem.2012.02.087 

  37. 37. Siemianowska E. Kosewska A. Aljewicz M. Skibniewska K.A. Polak-Juszczak L. Jarocki A. Jędras M. Larvae of mealworm ( Tenebrio molitor L.) as European novel food Agric. Sci. 2013 4 287 291 

  38. 38. Paul A. Frederich M. Megido R.C. Alabi T. Malik P. Uyttenbroeck R. Francis F. Blecker C. Haubruge E. Lognay G. Insect fatty acids: A comparison of lipids from three Orthopterans and Tenebrio molitor L. larvae J. Asia Pac. Entomol. 2017 20 337 340 10.1016/j.aspen.2017.02.001 

  39. 39. EFSA Scientific opinion on dietary reference values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol EFSA J. 2010 8 1 107 

  40. 40. Food and Agriculture Organization of the United Nations Fats and Fatty Acids in Human Nutrition Report of an Expert Consultation Food and Agriculture Organization of the United Nations Rom, Italy 2010 Volume 550 

  41. 41. Simon E. Baranyai E. Braun M. Fábián I. Tóthmérész B. Elemental concentration in mealworm beetle ( Tenebrio molitor L.) during metamorphosis Biol. Trace Elem. Res. 2013 154 81 87 10.1007/s12011-013-9700-1 23695727 

  42. 42. Etcheverry P. Grusak M.A. Fleige L.E. Application of in vitro bioaccessibility and bioavailability methods for calcium, carotenoids, folate, iron, magnesium, polyphenols, zinc, and vitamins B6, B12, D, and E Front. Physiol. 2012 3 1 22 10.3389/fphys.2012.00317 22275902 

  43. 43. Maares M. Keil C. Koza J. Straubing S. Schwerdtle T. Haase H. In vitro studies on zinc binding and buffering by intestinal mucins Int. J. Mol. Sci. 2018 19 2662 10.3390/ijms19092662 

  44. 44. Belluco S. Losasso C. Maggioletti M. Alonzi C.C. Paoletti M.G. Ricci A. Edible insects in a food safety and nutritional perspective: A critical review Compr. Rev. Food Sci. Food Saf. 2013 12 296 313 10.1111/1541-4337.12014 

  45. 45. Lähteenmäki-Uutela A. Grmelová N. Hénault-Ethier L. Deschamps M.H. Vandenberg G.W. Zhao A. Zhang Y. Yang B. Nemane V. Insects as food and feed: Laws of the European union, United States, Canada, Mexico, Australia, and China Eur. Food Feed Law Rev. 2017 12 22 36 

  46. 46. Dobermann D. Swift J.A. Field L.M. Opportunities and hurdles of edible insects for food and feed Nutr. Bull. 2017 42 293 308 10.1111/nbu.12291 

  47. 47. Hartmann C. Siegrist M. Insects as food: Perception and acceptance. Findings from current research Ernahrungs Umschau 2017 64 44 50 

  48. 48. Jongema Y. List of Edible Insects of the World 2017 1 100 Available online: https://www.wur.nl/en/Research-Results/Chair-groups/Plant-Sciences/Laboratory-of-Entomology/Edible-insects/Worldwide-species-list.htm (accessed on 10 February 2019) 

  49. 49. Rezaei F. vander Gheynst J.S. Critical moisture content for microbial growth in dried food-processing residues J. Sci. Food Agric. 2010 90 2000 2005 10.1002/jsfa.4044 20597097 

  50. 50. Zamora R. Hidalgo F.J. The Maillard reaction and lipid oxidation Lipid Technol. 2011 23 59 62 10.1002/lite.201100094 

  51. 51. Buttery R.G. Guadagni D.G. Ling L.C. Flavor Compounds: Volatilities in vegetable oil and oil-water mixtures. Estimation of odor thresholds J. Agric. Food Chem. 1973 21 198 201 10.1021/jf60186a029 

  52. 52. Fors S. Sensory Properties of Volatile Maillard Reaction Products and Related Compounds. The Mailla George R. Waller M.S.F. ACS Symposium Series American Chemical Society Washington, DC, USA 1983 185 286 

  53. 53. Brewer M.S. Vega J.D. Detectable Odor Thresholds of Selected Lipid Oxidation Compounds in a Meat Model System J. Food Sci. 1995 60 592 595 10.1111/j.1365-2621.1995.tb09834.x 

  54. 54. Dunkel A. Steinhaus M. Kotthoff M. Nowak B. Krautwurst D. Schieberle P. Hofmann T. Nature’s chemical signatures in human olfaction: A foodborne perspective for future biotechnology Angew. Chem. Int. Ed. 2014 53 7124 7143 10.1002/anie.201309508 24939725 

  55. 55. Lee G.H. Suriyaphan O. Cadwallader K.R. Aroma components of cooked tail meat of American lobster ( Homarus americanus ) J. Agric. Food Chem. 2001 49 4324 4332 10.1021/jf001523t 11559132 

  56. 56. Roohani N. Hurrell R. Kelishadi R. Schulin R. Zinc and its importance for human health J. Res. Med. Sci. 2013 18 144 157 23914218 

  57. 57. Plum L.M. Rink L. Haase H. The essential toxin: Impact of zinc on human health Int. J. Environ. Res. Public Health 2010 7 1342 1365 10.3390/ijerph7041342 20617034 

  58. 58. Prasad A.S. Discovery of human zinc deficiency: 50 years later J. Trace Elem. Med. Biol. 2012 26 66 69 10.1016/j.jtemb.2012.04.004 22664333 

  59. 59. Maret W. Sandstead H.H. Zinc requirements and the risks and benefits of zinc supplementation J. Trace Elem. Med. Biol. 2006 20 3 18 10.1016/j.jtemb.2006.01.006 16632171 

  60. 60. Gibson R.S. King J.C. Lowe N. A review of dietary zinc recommendations Food Nutr. Bull. 2016 37 443 460 10.1177/0379572116652252 27312357 

  61. 61. Deutsche Gesellschaft für Ernährung (DGE) Österreichische Gesellschaft für Ernährung (ÖGE) Schweizerische Gesellschaft für Ernährungsforschung (SGE) Schweizerische Vereinigung für Ernährung (SVE) D-A-CH Referenzwerte für die Nährstoffzufuhr 2nd ed. Neuer Umschau Buchverlag Bonn, Germany 2018 

  62. 62. Lönnerdal B. Dietary factors influencing zinc absorption J. Nutr. 2000 130 1378S 1383S 10.1093/jn/130.5.1378S 10801947 

  63. 63. Tang N. Skibsted L.H. Zinc bioavailability from phytate-rich foods and zinc supplements. Modeling the effects of food components with oxygen, nitrogen, and sulfur donor ligands J. Agric. Food Chem. 2017 65 8727 8743 10.1021/acs.jafc.7b02998 28905624 

  64. 64. Song Y. Kim M. Moon C. Seo D. Han Y.S. Jo Y.H. Noh M.Y. Park Y.K. Kim S.A. Kim Y.W. Extraction of chitin and chitosan from larval exuvium and whole body of edible mealworm, Tenebrio molitor Entomol. Res. 2018 48 227 233 10.1111/1748-5967.12304 

  65. 65. Anastopoulos I. Bhatnagar A. Bikiaris D.N. Kyzas G.Z. Chitin adsorbents for toxic metals: A review Int. J. Mol. Sci. 2017 18 114 10.3390/ijms18010114 

  66. 66. Bukkens S.G.F. The nutritional value of edible insects Ecol. Food Nutr. 1997 36 287 319 10.1080/03670244.1997.9991521 

  67. 67. O’Brien J. Morrissey P.A. Metal ion complexation by products of the Maillard reaction Food Chem. 1997 58 17 27 10.1016/S0308-8146(96)00162-8 

  68. 68. Seiquer I. Valverde A. Delgado-Andrade C. Navarro M.P. Influence of heat treatment of casein in presence of reducing sugars on Zn solubility and Zn uptake by Caco-2 cells after in vitro digestion J. Physiol. Biochem. 2000 56 237 246 10.1007/BF03179792 11198161 

  69. 69. Furniss D.E. Vuichoud J. Finot P.A. Hurrell R.F. The effect of Maillard reaction products on zinc metabolism in the rat Br. J. Nutr. 1989 62 739 742 10.1079/BJN19890074 2513873 

  70. 70. Bednarska A.J. Świątek Z. Subcellular partitioning of cadmium and zinc in mealworm beetle ( Tenebrio molitor ) larvae exposed to metal-contaminated flour Ecotoxicol. Environ. Saf. 2016 133 82 89 10.1016/j.ecoenv.2016.06.033 27423130 

  71. 71. Maares M. Duman A. Keil C. Schwerdtle T. Haase H. The impact of apical and basolateral albumin on intestinal zinc resorption in the Caco-2/HT-29-MTX co-culture model Metallomics 2018 10 979 991 10.1039/C8MT00064F 29931006 

  72. 72. Hambidge K.M. Miller L.V. Tran C.D. Krebs N.F. Measurements of zinc absorption: Application and interpretation in research designed to improve human zinc nutriture Int. J. Vitam. Nutr. Res. 2005 75 385 393 10.1024/0300-9831.75.6.385 16711472 

  73. 73. Maret W. The redox biology of redox-inert zinc ions Free Radic. Biol. Med. 2019 134 311 326 10.1016/j.freeradbiomed.2019.01.006 30625394 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로