$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Effect of Interfacial Interaction on the Conformational Variation of Poly(vinylidene fluoride) (PVDF) Chains in PVDF/Graphene Oxide (GO) Nanocomposite Fibers and Corresponding Mechanical Properties

ACS applied materials & interfaces, v.11 no.14, 2019년, pp.13665 - 13675  

Lee, Jung-Eun ,  Eom, Youngho ,  Shin, Young-Eun ,  Hwang, Sang-Ha ,  Ko, Hyun-Hyub ,  Chae, Han Gi

Abstract AI-Helper 아이콘AI-Helper

Poly(vinylidene fluoride) (PVDF)/graphene oxide (GO) nanocomposite fibers were dry-jet wet spun at the GO concentrations of 0, 1, and 2 wt % with respect to the polymer. The as-spun fibers were drawn in the draw ratio (DR) range of 2-6.5, and the correlation between the PVDF chain conformation and t...

Keyword

참고문헌 (66)

  1. Hwang, Sang-Ha, Kang, Dongwoo, Ruoff, Rodney S., Shin, Hyeon Suk, Park, Young-Bin. Poly(vinyl alcohol) Reinforced and Toughened with Poly(dopamine)-Treated Graphene Oxide, and Its Use for Humidity Sensing. ACS nano, vol.8, no.7, 6739-6747.

  2. Huang, Hua-Dong, Liu, Chun-Yan, Zhang, Liang-Qing, Zhong, Gan-Ji, Li, Zhong-Ming. Simultaneous Reinforcement and Toughening of Carbon Nanotube/Cellulose Conductive Nanocomposite Films by Interfacial Hydrogen Bonding. ACS sustainable chemistry et engineering, vol.3, no.2, 317-324.

  3. Feng, Xiaming, Xing, Weiyi, Yang, Hongyu, Yuan, Bihe, Song, Lei, Hu, Yuan, Liew, Kim Meow. High-Performance Poly(ethylene oxide)/Molybdenum Disulfide Nanocomposite Films: Reinforcement of Properties Based on the Gradient Interface Effect. ACS applied materials & interfaces, vol.7, no.24, 13164-13173.

  4. Yu, B., Lim, H.N., Lee, Y.K.. Influence of nano- and micro-filler proportions on the optical property stability of experimental dental resin composites. Materials & design, vol.31, no.10, 4719-4724.

  5. Kundie, Fathie, Azhari, Che Husna, Muchtar, Andanastuti, Ahmad, Zainal Arifin. Effects of Filler Size on the Mechanical Properties of Polymer-filled Dental Composites: A Review of Recent Developments. Journal of physical science = Jurnal sains fizikal, vol.29, no.1, 141-165.

  6. Hári, József, Horváth, Flóra, Renner, Károly, Móczó, János, Pukánszky, Béla. Comparison of the reinforcing effect of various micro- and nanofillers in PA6. Polymer testing, vol.72, 178-186.

  7. Jain, Rahul, Minus, Marilyn L., Chae, Han Gi, Kumar, Satish. Processing, Structure, and Properties of PAN/MWNT Composite Fibers. Macromolecular materials and engineering, vol.295, no.8, 742-749.

  8. Sadeghi, Soheil, Arjmand, Mohammad, Otero Navas, Ivonne, Zehtab Yazdi, Alireza, Sundararaj, Uttandaraman. Effect of Nanofiller Geometry on Network Formation in Polymeric Nanocomposites: Comparison of Rheological and Electrical Properties of Multiwalled Carbon Nanotube and Graphene Nanoribbon. Macromolecules, vol.50, no.10, 3954-3967.

  9. Huang, Tao, Lu, Mingxia, Yu, Hao, Zhang, Qinghong, Wang, Hongzhi, Zhu, Meifang. Enhanced Power Output of a Triboelectric Nanogenerator Composed of Electrospun Nanofiber Mats Doped with Graphene Oxide. Scientific reports, vol.5, 13942-.

  10. Bhavanasi, Venkateswarlu, Kumar, Vipin, Parida, Kaushik, Wang, Jiangxin, Lee, Pooi See. Enhanced Piezoelectric Energy Harvesting Performance of Flexible PVDF-TrFE Bilayer Films with Graphene Oxide. ACS applied materials & interfaces, vol.8, no.1, 521-529.

  11. El Achaby, M., Arrakhiz, F.Z., Vaudreuil, S., Essassi, E.M., Qaiss, A.. Piezoelectric β-polymorph formation and properties enhancement in graphene oxide – PVDF nanocomposite films. Applied surface science, vol.258, no.19, 7668-7677.

  12. Abbasipour, Mina, Khajavi, Ramin, Yousefi, Ali Akbar, Yazdanshenas, Mohammad Esmail, Razaghian, Farhad. The piezoelectric response of electrospun PVDF nanofibers with graphene oxide, graphene, and halloysite nanofillers: a comparative study. Journal of materials science. Materials in electronics, vol.28, no.21, 15942-15952.

  13. Mandal, Amit, Nandi, Arun K.. Physical properties of poly(vinylidene fluoride) composites with polymer functionalized multiwalled carbon nanotubes using nitrene chemistry. Journal of materials chemistry, vol.21, no.39, 15752-15763.

  14. Baji, A., Mai, Y.W., Abtahi, M., Wong, S.C., Liu, Y., Li, Q.. Microstructure development in electrospun carbon nanotube reinforced polyvinylidene fluoride fibers and its influence on tensile strength and dielectric permittivity. Composites science and technology, vol.88, 1-8.

  15. Yang, Jinghui, Chen, Qiyi, Chen, Feng, Zhang, Qin, Wang, Ke, Fu, Qiang. Realizing the full nanofiller enhancement in melt-spun fibers of poly(vinylidene fluoride)/carbon nanotube composites. Nanotechnology, vol.22, no.35, 355707-.

  16. Zhang, Qin, Adebisi, Rasheed, Gladden, Joseph. Synthesize procedures, mechanical and electrical properties of poly(vinylidene fluoride) nanocomposite thin films containing multiwalled carbon nanotubes. Polymer composites, vol.33, no.4, 509-514.

  17. Chen, Xuelong, Liang, Yen Nan, Yin, Ming, Roy, Sunanda, Marom, Gad, Men, Yongfeng, Hu, Xiao. Exceptional enhancement of ductility and toughness in poly(vinylidene fluoride)/carbon nanotubes composites. Journal of applied polymer science, vol.133, no.26,

  18. Adhikary, Prakriti, Garain, Samiran, Mandal, Dipankar. The co-operative performance of a hydrated salt assisted sponge like P(VDF-HFP) piezoelectric generator: an effective piezoelectric based energy harvester. Physical chemistry chemical physics : PCCP, vol.17, no.11, 7275-7281.

  19. Bae, J.H., Chang, S.H.. Characterization of an electroactive polymer (PVDF-TrFE) film-type sensor for health monitoring of composite structures. Composite structures, vol.131, 1090-1098.

  20. Daneshkhah, A., Shrestha, S., Agarwal, M., Varahramyan, K.. Poly(vinylidene fluoride-hexafluoropropylene) composite sensors for volatile organic compounds detection in breath. Sensors and actuators. B, Chemical, vol.221, 635-643.

  21. Ghosh, Sujoy Kumar, Alam, Md. Mehebub, Mandal, Dipankar. The in situ formation of platinum nanoparticles and their catalytic role in electroactive phase formation in poly(vinylidene fluoride): a simple preparation of multifunctional poly(vinylidene fluoride) films doped with platinum nanoparticles. RSC advances, vol.4, no.79, 41886-41894.

  22. Li, Zhang, Mingqiu, Rong, Minzhi, Ruan, Wenhong. Studies on the transformation process of PVDF from α to β phase by stretching. RSC advances, vol.4, no.8, 3938-3943.

  23. Maji, Subrata, Sarkar, Piyush Kanti, Aggarwal, Leena, Ghosh, Sujoy Kumar, Mandal, Dipankar, Sheet, Goutam, Acharya, Somobrata. Self-oriented β-crystalline phase in the polyvinylidene fluoride ferroelectric and piezo-sensitive ultrathin Langmuir–Schaefer film. Physical chemistry chemical physics : PCCP, vol.17, no.12, 8159-8165.

  24. Mohammadi, Behzad, Yousefi, Ali Akbar, Bellah, Samad Moemen. Effect of tensile strain rate and elongation on crystalline structure and piezoelectric properties of PVDF thin films. Polymer testing, vol.26, no.1, 42-50.

  25. Nguyen, Hiep, Navid, Ashcon, Pilon, Laurent. Pyroelectric energy converter using co-polymer P(VDF-TrFE) and Olsen cycle for waste heat energy harvesting. Applied thermal engineering, vol.30, no.14, 2127-2137.

  26. Ribeiro, Clarisse, Correia, Daniela M., Ribeiro, Sylvie, Sencadas, Vítor, Botelho, Gabriela, Lanceros‐Méndez, Senentxu. Piezoelectric poly(vinylidene fluoride) microstructure and poling state in active tissue engineering. Engineering in life sciences, vol.15, no.4, 351-356.

  27. Sarkar, Piyush Kanti, Maji, Subrata, Kumar, Gundam Sandeep, Chandra Sahoo, Krushna, Mandal, Dipankar, Acharya, Somobrata. Triboelectric generator composed of bulk poly(vinylidene fluoride) and polyethylene polymers for mechanical energy conversion. RSC advances, vol.6, no.2, 910-917.

  28. Tiwari, Vineet, Srivastava, Geetika. Effect of thermal processing conditions on the structure and dielectric properties of PVDF films. Journal of polymer research, vol.21, no.11, 587-.

  29. Yu, Jinhong, Jiang, Pingkai, Wu, Chao, Wang, Lichun, Wu, Xinfeng. Graphene nanocomposites based on poly(vinylidene fluoride): Structure and properties. Polymer composites, vol.32, no.10, 1483-1491.

  30. Baniasadi, Mahmoud, Huang, Jiacheng, Xu, Zhe, Moreno, Salvador, Yang, Xi, Chang, Jason, Quevedo-Lopez, Manuel Angel, Naraghi, Mohammad, Minary-Jolandan, Majid. High-Performance Coils and Yarns of Polymeric Piezoelectric Nanofibers. ACS applied materials & interfaces, vol.7, no.9, 5358-5366.

  31. Liu, Xia, Ma, Jing, Wu, Xiaoming, Lin, Liwei, Wang, Xiaohong. Polymeric Nanofibers with Ultrahigh Piezoelectricity via Self-Orientation of Nanocrystals. ACS nano, vol.11, no.2, 1901-1910.

  32. Yu, Hao, Huang, Tao, Lu, Mingxia, Mao, Mengye, Zhang, Qinghong, Wang, Hongzhi. Enhanced power output of an electrospun PVDF/MWCNTs-based nanogenerator by tuning its conductivity. Nanotechnology, vol.24, no.40, 405401-.

  33. Zheng, Jie, Yan, Xu, Li, Meng-Meng, Yu, Gui-Feng, Zhang, Hong-Di, Pisula, Wojciech, He, Xiao-Xiao, Duvail, Jean-Luc, Long, Yun-Ze. Electrospun Aligned Fibrous Arrays and Twisted Ropes: Fabrication, Mechanical and Electrical Properties, and Application in Strain Sensors. Nanoscale research letters, vol.10, no.1, 475-.

  34. Zhang, Yue, Zhang, Changhai, Feng, Yu, Zhang, Tiandong, Chen, Qingguo, Chi, Qingguo, Liu, Lizhu, Li, Guofeng, Cui, Yang, Wang, Xuan, Dang, Zhimin, Lei, Qingquan. Excellent energy storage performance and thermal property of polymer-based composite induced by multifunctional one-dimensional nanofibers oriented in-plane direction. Nano energy, vol.56, 138-150.

  35. Chi, Qingguo, Wang, Xubin, Zhang, Changhai, Chen, Qingguo, Chen, Minghua, Zhang, Tiandong, Gao, Liang, Zhang, Yue, Cui, Yang, Wang, Xuan, Lei, Qingquan. High Energy Storage Density for Poly(vinylidene fluoride) Composites by Introduced Core-Shell CaCu3Ti4O12@Al2O3 Nanofibers. ACS sustainable chemistry et engineering, vol.6, no.7, 8641-8649.

  36. Kaura, T, Nath, R, Perlman, M M. Simultaneous stretching and corona poling of PVDF films. Journal of physics. D, applied physics, vol.24, no.10, 1848-1852.

  37. Shah, D., Maiti, P., Gunn, E., Schmidt, D. F., Jiang, D. D., Batt, C. A., Giannelis, E. P.. Dramatic Enhancements in Toughness of Polyvinylidene Fluoride Nanocomposites via Nanoclay-Directed Crystal Structure and Morphology. Advanced materials, vol.16, no.14, 1173-1177.

  38. Imamura, R., Silva, A. B., Gregorio Jr., R.. γ→β Phase transformation induced in poly(vinylidene fluoride) by stretching. Journal of applied polymer science, vol.110, no.5, 3242-3246.

  39. Hasegawa, Ryozo, Kobayashi, Masamichi, Tadokoro, Hiroyuki. Molecular Conformation and Packing of Poly(vinylidene fluoride). Stability of Three Crystalline Forms and the Effect of High Pressure. Polymer journal, vol.3, no.5, 591-599.

  40. Kavarnos, G.J., Holman, R.W.. A molecular mechanics and crystal packing study of the effects of fluorine content in poly(vinylidene fluoride) and vinylidene fluoride-trifluoroethylene copolymers. Polymer, vol.35, no.25, 5586-5589.

  41. Byutner, O. G., Smith, G. D.. Conformational Properties of Poly(vinylidene fluoride). A Quantum Chemistry Study of Model Compounds. Macromolecules, vol.32, no.25, 8376-8382.

  42. Shin, Young-Eun, Sa, Young Jin, Park, Seungyoung, Lee, Jiwon, Shin, Kyung-Hee, Joo, Sang Hoon, Ko, Hyunhyub. An ice-templated, pH-tunable self-assembly route to hierarchically porous graphene nanoscroll networks. Nanoscale, vol.6, no.16, 9734-9741.

  43. Chae, H.G., Minus, M.L., Rasheed, A., Kumar, S.. Stabilization and carbonization of gel spun polyacrylonitrile/single wall carbon nanotube composite fibers. Polymer, vol.48, no.13, 3781-3789.

  44. Chae, Han Gi, Sreekumar, T.V., Uchida, Tetsuya, Kumar, Satish. A comparison of reinforcement efficiency of various types of carbon nanotubes in polyacrylonitrile fiber. Polymer, vol.46, no.24, 10925-10935.

  45. Hadimani, R L, Bayramol, D Vatansever, Sion, N, Shah, T, Qian, Limin, Shi, Shaoxin, Siores, E. Continuous production of piezoelectric PVDF fibre for e-textile applications. Smart materials & structures, vol.22, no.7, 075017-.

  46. Minus, Marilyn L., Chae, Han Gi, Kumar, Satish. Interfacial Crystallization in Gel-Spun Poly(vinyl alcohol)/Single-Wall Carbon Nanotube Composite Fibers. Macromolecular chemistry and physics, vol.210, no.21, 1799-1808.

  47. ELmezayyen, Ayman S., Reicha, Fikry M., El-Sherbiny, Ibrahim M., Zheng, Jianming, Xu, Chunye. Significantly enhanced electroactive β phase crystallization and UV-shielding properties in PVDF nanocomposites flexible films through loading of ATO nanoparticles: Synthesis and formation mechanism. European polymer journal, vol.90, 195-208.

  48. Martins, P., Lopes, A.C., Lanceros-Mendez, S.. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Progress in polymer science, vol.39, no.4, 683-706.

  49. Eom, Youngho, Park, Yeonju, Jung, Young Mee, Kim, Byoung Chul. Effects of conformational change of polyacrylonitrile on the aging behavior of the solutions in N,N-dimethyl formamide. Polymer, vol.108, 193-205.

  50. Bachmann, M. A., Koenig, J. L.. Vibrational analysis of phase III of poly (vinylidene fluoride). The Journal of chemical physics, vol.74, no.10, 5896-5910.

  51. Bachmann, M. A., Gordon, W. L., Koenig, J.L., Lando, J. B.. An infrared study of phase-III poly(vinylidene fluoride). Journal of applied physics, vol.50, no.10, 6106-6112.

  52. Fina, L. J., Koenig, J. L., Gordon, W. L.. Analysis of trichroic infrared absorption in solids. III. Phase I poly(vinylidene fluride). Journal of polymer science. Part B, Polymer physics, vol.24, no.11, 2541-2551.

  53. Tashiro, Kohji, Kobayashi, Masamichi, Tadokoro, Hiroyuki. Vibrational spectra and disorder-order transition of poly(vinylidene fluoride) form III. Macromolecules, vol.14, no.6, 1757-1764.

  54. Ma, Xiaoqian, Liu, Jinglin, Ni, Chaoying, Martin, David C., Chase, D. Bruce, Rabolt, John F.. Molecular Orientation in Electrospun Poly(vinylidene fluoride) Fibers. ACS Macro letters, vol.1, no.3, 428-431.

  55. Mohamadi, S., Sharifi‐Sanjani, N.. Investigation of the crystalline structure of PVDF in PVDF/PMMA/graphene polymer blend nanocomposites. Polymer composites, vol.32, no.9, 1451-1460.

  56. Nakagawa, Koichi, Ishida, Yoichi. Annealing effects in poly(vinylidene fluoride) as revealed by specific volume measurements, differential scanning calorimetry, and electron microscopy. Journal of polymer science. Polymer physics edition, vol.11, no.11, 2153-2171.

  57. Teyssedre, G., Grimau, M., Bernes, A., Martinez, J.J., Lacabanne, C.. α-Relaxation/retardation mode in semicrystalline polymers with flexible chains. Polymer, vol.35, no.20, 4397-4403.

  58. Li, Yue, Zhang, Guoqiang, Song, Shaofeng, Xu, Haijun, Pan, Mingwang, Zhong, Gan-Ji. How Chain Intermixing Dictates the Polymorphism of PVDF in Poly(vinylidene fluoride)/Polymethylmethacrylate Binary System during Recrystallization: A Comparative Study on Core–Shell Particles and Latex Blend. Polymers, vol.9, no.9, 448-.

  59. Nishi, T., Wang, T. T.. Melting Point Depression and Kinetic Effects of Cooling on Crystallization in Poly(vinylidene fluoride)-Poly(methyl methacrylate) Mixtures. Macromolecules, vol.8, no.6, 909-915.

  60. Dutta, Biplab, Kar, Epsita, Bose, Navonil, Mukherjee, Sampad. Significant enhancement of the electroactive β-phase of PVDF by incorporating hydrothermally synthesized copper oxide nanoparticles. RSC advances, vol.5, no.127, 105422-105434.

  61. Marega, C., Marigo, A.. Influence of annealing and chain defects on the melting behaviour of poly(vinylidene fluoride). European polymer journal, vol.39, no.8, 1713-1720.

  62. Davies, G.R., Singh, H.. Evidence for a new crystal phase in conventionally poled samples of poly(vinylidene fluoride) in crystal form II. Polymer, vol.20, no.6, 772-774.

  63. Day, J.A., Lewis, E.L.V., Davies, G.R.. X-ray structural study of oriented vinylidene fluoride/trifluoroethylene copolymers. Polymer, vol.33, no.8, 1571-1578.

  64. Guo, Huilong, Zhang, Yao, Xue, Feifei, Cai, Ziwei, Shang, Yingrui, Li, Jingqing, Chen, Yu, Wu, Zhonghua, Jiang, Shichun. In-situ synchrotron SAXS and WAXS investigations on deformation and α–β transformation of uniaxial stretched poly(vinylidene fluoride). CrystEngComm, vol.15, no.8, 1597-1606.

  65. Lee, S.H., Cho, H.H.. Crystal Structure and Thermal Properties of Poly(vinylidene fluoride)-Carbon Fiber Composite Films with Various Drawing Temperatures and Speeds. Fibers and polymers, vol.11, no.8, 1146-1151.

  66. Wu, J., Schultz, J. M., Yeh, F., Hsiao, B. S., Chu, B.. In-Situ Simultaneous Synchrotron Small- and Wide-Angle X-ray Scattering Measurement of Poly(vinylidene fluoride) Fibers under Deformation. Macromolecules, vol.33, no.5, 1765-1777.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로