$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

MOMSense: Metal-Oxide-Metal Elementary Glucose Sensor 원문보기

Scientific reports, v.9, 2019년, pp.5524 -   

Abunahla, Heba (Department of Electrical and Computer Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE) ,  Mohammad, Baker (Department of Electrical and Computer Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE) ,  Alazzam, Anas (Department of Mechanical Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE) ,  Jaoude, Maguy Abi (Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, UAE) ,  Al-Qutayri, Mahmoud (Department of Electrical and Computer Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE) ,  Abdul Hadi, Sabina (Department of Electrical and Computer Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE) ,  Al-Sarawi, Said F. (Centre for Biomedical Engineering, School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA 5005 Australia)

Abstract AI-Helper 아이콘AI-Helper

In this paper, we present a novel Pt/CuO/Pt metal-oxide-metal (MOM) glucose sensor. The devices are fabricated using a simple, low-cost standard photolithography process. The unique planar structure of the device provides a large electrochemically active surface area, which acts as a nonenzymatic re...

참고문헌 (74)

  1. 1. Danaei G National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2· 7 million participants The Lancet 2011 378 9785 31 40 10.1016/S0140-6736(11)60679-X 

  2. 2. World Health Organization. Global status report on noncommunicable diseases 2010 . Geneva: World Health Organization (2011). 

  3. 3. Tian K Prestgard M Tiwari A A review of recent advances in nonenzymatic glucose sensors Materials Science and Engineering: C 2014 41 100 118 10.1016/j.msec.2014.04.013 24907743 

  4. 4. Nichols SP Koh A Storm WL Shin JH Schoenfisch MH Biocompatible materials for continuous glucose monitoring devices Chemical reviews 2013 113 4 2528 2549 10.1021/cr300387j 23387395 

  5. 5. Shaw, K. M., & Cummings, M. H. (Eds). Diabetes: Chronic Complications . John Wiley & Sons (2012). 

  6. 6. Pearson-Stuttard J Blundell S Harris T Cook DG Critchley J Diabetes and infection: assessing the association with glycaemic control in population-based studies. The Lancet Diabetes & Endocrinology 2016 4 2 148 158 

  7. 7. Shah, M., & Vella, A. Understanding Diabetes Mellitus: Pathophysiology. In Metabolic Syndrome and Diabetes . Springer, New York, NY, 33–45 (2016). 

  8. 8. Lv Y Jin S Wang Y Lun Z Xia C Recent advances in the application of nanomaterials in enzymatic glucose sensors Journal of the Iranian Chemical Society 2016 13 10 1767 1776 10.1007/s13738-016-0894-y 

  9. 9. Wang G Non-enzymatic electrochemical sensing of glucose Microchimica Acta 2013 180 3-4 161 186 10.1007/s00604-012-0923-1 

  10. 10. Tang J Sensitive enzymatic glucose detection by TiO 2 nanowire photoelectrochemical biosensors Journal of Materials Chemistry A 2014 2 17 6153 6157 10.1039/C3TA14173J 

  11. 11. Gao ZD Qu Y Li T Shrestha NK Song Y-Y Development of Amperometric Glucose Biosensor Based on Prussian Blue Functionalized TiO 2 Nanotube Arrays Sci. Rep. 2014 4 6891 10.1038/srep06891 25367086 

  12. 12. Wang HC Lee AR Recent developments in blood glucose sensors Journal of food and drug analysis 2015 23 2 191 200 10.1016/j.jfda.2014.12.001 28911373 

  13. 13. Ahmad R Highly efficient non-enzymatic glucose sensor based on CuO modified vertically-grown ZnO nanorods on electrode Scientific Reports 2017 7 1 5715 10.1038/s41598-017-06064-8 28720844 

  14. 14. Liu S Hui KS Hui KN Flower-like copper cobaltite nanosheets on graphite paper as high-performance supercapacitor electrodes and enzymeless glucose sensors ACS applied materials & interfaces 2016 8 5 3258 3267 10.1021/acsami.5b11001 26757795 

  15. 15. Zhu Z A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene Sensors 2012 12 5 5996 6022 10.3390/s120505996 22778628 

  16. 16. Ahmad R Vaseem M Tripathy N Hahn YB Wide linear-range detecting nonenzymatic glucose biosensor based on CuO nanoparticles inkjet-printed on electrodes Analytical chemistry 2013 85 21 10448 10454 10.1021/ac402925r 24070377 

  17. 17. Pandya A Sutariya PG Menon SK A non enzymatic glucose biosensor based on an ultrasensitive calix [4] arene functionalized boronic acid gold nanoprobe for sensing in human blood serum Analyst 2013 138 8 2483 2490 10.1039/c3an36833e 23476922 

  18. 18. Pang, H., Lu, Q., Wang, J., Li, Y. & Gao, F. Glucose-assisted synthesis of copper micropuzzles and their application as nonenzymatic glucose sensors. Chemical Communications , 46 ( 12 ) (2010). 

  19. 19. Huang J High performance non-enzymatic glucose biosensor based on copper nanowires–carbon nanotubes hybrid for intracellular glucose study Sensors and Actuators B: Chemical 2013 182 618 624 10.1016/j.snb.2013.03.065 

  20. 20. Cheng TM (110)-exposed gold nanocoral electrode as low onset potential selective glucose sensor ACS applied materials & interfaces 2010 2 10 2773 2780 10.1021/am100432a 20822135 

  21. 21. Guo C Wang Y Zhao Y Xu C Non-enzymatic glucose sensor based on three dimensional nickel oxide for enhanced sensitivity Analytical Methods, 2013 5 7 1644 1647 10.1039/c3ay00067b 

  22. 22. Dong XC 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection ACS nano 2012 6 4 3206 3213 10.1021/nn300097q 22435881 

  23. 23. Fang B Silver oxide nanowalls grown on Cu substrate as an enzymeless glucose sensor ACS applied materials & interfaces 2009 1 12 2829 2834 10.1021/am900576z 20356163 

  24. 24. Zhou C Ultrasensitive non-enzymatic glucose sensor based on three-dimensional network of ZnO-CuO hierarchical nanocomposites by electrospinning Scientific reports 2014 4 7382 10.1038/srep07382 25488502 

  25. 25. Mani S Hydrothermal synthesis of NiWO 4 crystals for high performance non-enzymatic glucose biosensors Scientific reports 2016 6 24128 10.1038/srep24128 27087561 

  26. 26. Sivakumar M Low-temperature chemical synthesis of CoWO4 nanospheres for sensitive nonenzymatic glucose sensor The Journal of Physical Chemistry C 2016 120 30 17024 17028 10.1021/acs.jpcc.6b04116 

  27. 27. Pletcher D Electrocatalysis: present and future Journal of applied electrochemistry 1984 14 4 403 415 10.1007/BF00610805 

  28. 28. Rahman MM Ahammad AJ Jin JH Ahn SJ Lee JJ A comprehensive review of glucose biosensors based on nanostructured metal-oxides Sensors 2010 10 5 4855 4886 10.3390/s100504855 22399911 

  29. 29. Burke LD Premonolayer oxidation and its role in electrocatalysis Electrochimica Acta 1994 39 11-12 1841 1848 10.1016/0013-4686(94)85173-5 

  30. 30. Wang J Amperometric biosensors for clinical and therapeutic drug monitoring: a review Journal of pharmaceutical and biomedical analysis 1999 19 1-2 47 53 10.1016/S0731-7085(98)00056-9 10698567 

  31. 31. Ernst S Heitbaum J Hamann CH The electrooxidation of glucose in phosphate buffer solutions: Part I. Reactivity and kinetics below 350 mV/RHE Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1979 100 1-2 173 183 10.1016/S0022-0728(79)80159-X 

  32. 32. Xu S One-pot synthesis of Ag@ Cu yolk–shell nanostructures and their application as non-enzymatic glucose biosensors CrystEngComm 2014 16 38 9075 9082 10.1039/C4CE01074D 

  33. 33. Khan R Glucose-assisted synthesis of Cu2O shuriken-like nanostructures and their application as nonenzymatic glucose biosensors Sensors and Actuators B: Chemical 2014 203 471 476 10.1016/j.snb.2014.06.128 

  34. 34. Liu S Yu B Zhang T A novel non-enzymatic glucose sensor based on NiO hollow spheres Electrochimica Acta 2013 102 104 107 10.1016/j.electacta.2013.03.191 

  35. 35. Luo J Jiang S Zhang H Jiang J Liu X A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode Analytica chimica acta 2012 709 47 53 10.1016/j.aca.2011.10.025 22122930 

  36. 36. Li X Nickel/Copper nanoparticles modified TiO 2 nanotubes for non-enzymatic glucose biosensors Sensors and actuators B: Chemical 2013 181 501 508 10.1016/j.snb.2013.02.035 

  37. 37. Sun A Zheng J Sheng Q A highly sensitive non-enzymatic glucose sensor based on nickel and multi-walled carbon nanotubes nanohybrid films fabricated by one-step co-electrodeposition in ionic liquids Electrochimica Acta 2012 65 64 69 10.1016/j.electacta.2012.01.007 

  38. 38. Zhao J A non-enzymatic glucose sensor based on the composite of cubic Cu nanoparticles and arc-synthesized multi-walled carbon nanotubes Biosensors and bioelectronics 2013 47 86 91 10.1016/j.bios.2013.02.032 23562730 

  39. 39. Saei AA Dolatabadi JEN Najafi-Marandi P Abhari A de la Guardia M Electrochemical biosensors for glucose based on metal nanoparticles TrAC Trends in Analytical Chemistry 2013 42 216 227 10.1016/j.trac.2012.09.011 

  40. 40. Cao F Nickel oxide microfibers immobilized onto electrode by electrospinning and calcination for nonenzymatic glucose sensor and effect of calcination temperature on the performance Biosensors and Bioelectronics. 2011 26 5 2756 2760 10.1016/j.bios.2010.10.013 21074398 

  41. 41. Wang G Free-standing nickel oxide nanoflake arrays: synthesis and application for highly sensitive non-enzymatic glucose sensors Nanoscale. 2012 4 10 3123 3127 10.1039/c2nr30302g 22491751 

  42. 42. Soomro RA Ibupoto ZH Abro MI Willander M Electrochemical sensing of glucose based on novel hedgehog-like NiO nanostructures Sensors and Actuators B: Chemical. 2015 209 966 974 10.1016/j.snb.2014.12.050 

  43. 43. Sharifi E Salimi A Shams E Noorbakhsh A Amini MK Shape-dependent electron transfer kinetics and catalytic activity of NiO nanoparticles immobilized onto DNA modified electrode: fabrication of highly sensitive enzymeless glucose sensor Biosensors and Bioelectronics. 2014 56 313 319 10.1016/j.bios.2014.01.010 24525015 

  44. 44. Zhang H Liu S Nanoparticles-assembled NiO nanosheets templated by graphene oxide film for highly sensitive non-enzymatic glucose sensing Sensors and Actuators B: Chemical. 2017 238 788 794 10.1016/j.snb.2016.07.126 

  45. 45. Zhu H Li L Zhou W Shao Z Chen X Advances in non-enzymatic glucose sensors based on metal oxides Journal of Materials Chemistry B. 2016 4 46 7333 7349 10.1039/C6TB02037B 

  46. 46. Dar GN Fabrication of highly sensitive non-enzymatic glucose biosensor based on ZnO nanorods Science of Advanced Materials 2011 3.6 901 906 10.1166/sam.2011.1242 

  47. 47. Ibupoto ZH Khun K Beni V Liu X Willander M Synthesis of novel CuO nanosheets and their non-enzymatic glucose sensing applications Sensors 2013 13 6 7926 7938 10.3390/s130607926 23787727 

  48. 48. Reitz E Jia W Gentile M Wang Y Lei Y CuO nanospheres based nonenzymatic glucose sensor. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis 2008 20 22 2482 2486 

  49. 49. Sun S Hierarchical CuO nanoflowers: water-required synthesis and their application in a nonenzymatic glucose biosensor Physical Chemistry Chemical Physics 2013 15 26 10904 10913 10.1039/c3cp50922b 23698563 

  50. 50. Zhang W Li R Xing L Wang X Gou X Carnation‐like CuO Hierarchical Nanostructures Assembled by Porous Nanosheets for Nonenzymatic Glucose Sensing Electroanalysis 2016 28 9 2214 2221 10.1002/elan.201600132 

  51. 51. Medeiros NG Ribas VC Lavayen V Da Silva JA Synthesis of flower-like CuO hierarchical nanostructures as an electrochemical platform for glucose sensing Journal of Solid State Electrochemistry 2016 20 9 2419 2426 10.1007/s10008-016-3163-1 

  52. 52. Gou X A very facile strategy for the synthesis of ultrathin CuO nanorods towards non-enzymatic glucose sensing New Journal of Chemistry 2018 42 8 6364 6369 10.1039/C7NJ04717G 

  53. 53. Meher SK Rao GR Archetypal sandwich-structured CuO for high performance non-enzymatic sensing of glucose Nanoscale 2013 5 5 2089 2099 10.1039/c2nr33264g 23381131 

  54. 54. Lin LY Karakocak BB Kavadiya S Soundappan T Biswas P A highly sensitive non-enzymatic glucose sensor based on Cu/Cu 2 O/CuO ternary composite hollow spheres prepared in a furnace aerosol reactor Sensors and Actuators B: Chemical 2018 259 745 752 10.1016/j.snb.2017.12.035 

  55. 55. Dayakar T Rao KV Bikshalu K Malapati V Sadasivuni KK Non-enzymatic sensing of glucose using screen-printed electrode modified with novel synthesized CeO 2 @ CuO core shell nanostructure Biosensors and Bioelectronics 2018 111 166 173 10.1016/j.bios.2018.03.063 29684758 

  56. 56. Dung NQ Patil D Jung H Kim D A high-performance nonenzymatic glucose sensor made of CuO–SWCNT nanocomposites Biosensors and Bioelectronics 2013 42 280 286 10.1016/j.bios.2012.10.044 23208099 

  57. 57. Foroughi, F., Rahsepar, M., Hadianfard, M. J., & Kim, H. Microwave-assisted synthesis of graphene modified CuO nanoparticles for voltammetric enzyme-free sensing of glucose at biological pH values. Microchimica Acta , 185 ( 1 ) (2018). 

  58. 58. Tang Z Du X Louie RF Kost GJ Effects of pH on glucose measurements with handheld glucose meters and a portable glucose analyzer for point-of-care testing Archives of pathology & laboratory medicine. 2000 124 4 577 582 10747316 

  59. 59. Flores, G., Perdigones, F., Aracil, C., Cabello, M. & Quero, J. M. Microfluidic platform with absorbance sensor for glucose detection. In Electron Devices (CDE) , 201 5 10th Spanish Conference on (pp. 1–4). IEEE (2015). 

  60. 60. Agrawal, M., & Seshia, A. A. A microfluidic platform for glucose sensing using broadband ultrasound spectroscopy. In Frequency Control Symposium (IFCS) , 2016 IEEE International (pp. 1–5). IEEE (2016). 

  61. 61. Gonzalez A Estala L Gaines M Gomez FA Mixed thread/paper‐based microfluidic chips as a platform for glucose assays Electrophoresis 2016 37 12 1685 1690 10.1002/elps.201600029 27060975 

  62. 62. Avoundjian A Jalali-Heravi M Gomez FA Use of chemometrics to optimize a glucose assay on a paper microfluidic platform Analytical and bioanalytical chemistry 2017 409 10 2697 2703 10.1007/s00216-017-0214-0 28150019 

  63. 63. Liu S Su W Ding X A review on microfluidic paper-based analytical devices for glucose detection Sensors. 2016 16 12 2086 10.3390/s16122086 

  64. 64. Suresh V Qunya O Kanta BL Yuh LY Chong KS Non-invasive paper-based microfluidic device for ultra-low detection of urea through enzyme catalysis Royal Society Open Science. 2018 5 3 171980 10.1098/rsos.171980 29657797 

  65. 65. Toghill KE Compton RG Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation Int. J. Electrochem. Sci 2010 5 9 1246 1301 

  66. 66. Park S Boo H Chung TD Electrochemical non-enzymatic glucose sensors Analytica chimica acta 2006 556 1 46 57 10.1016/j.aca.2005.05.080 17723330 

  67. 67. Yoo EH Lee SY Glucose biosensors: an overview of use in clinical practice Sensors 2010 10 5 4558 4576 10.3390/s100504558 22399892 

  68. 68. Beverskog, B. & Puigdomenech, I. Revised Pourbaix diagrams for Copper at 5–150 C. Swedish Nuclear Power Inspectorate (1995). 

  69. 69. Barragan JT Kogikoski S Jr. da Silva ET Kubota LT Insight into the Electro-Oxidation Mechanism of Glucose and Other Carbohydrates by CuO-Based Electrodes Analytical chemistry 2018 90 5 3357 3365 10.1021/acs.analchem.7b04963 29424228 

  70. 70. Singh SV Saxena OC Singh MP Mechanism of copper (II) oxidation of reducing sugars. I. Kinetics and mechanism of oxidation of D-xylose, L-arabinose, D-glucose, D-fructose, D-mannose, D-galactose, L-sorbose, lactose, maltose, cellobiose, and melibiose by copper (II) in alkaline medium Journal of the American Chemical Society 1970 92 3 537 541 10.1021/ja00706a020 

  71. 71. Katoch, R. Analytical techniques in biochemistry and molecular biology. Springer Science & Business Media (2011). 

  72. 72. Cao F Gong J Nonenzymatic glucose sensor based on CuO microfibers composed of CuO nanoparticles Analytica chimica acta 2012 723 39 44 10.1016/j.aca.2012.02.036 22444571 

  73. 73. Liu G Improvement of sensitive CuO NFs–ITO nonenzymatic glucose sensor based on in situ electrospun fiber Talanta 2012 101 24 31 10.1016/j.talanta.2012.08.040 23158286 

  74. 74. Huang F Nonenzymatic glucose sensor based on three different CuO nanomaterials. Analytical Methods 2013 5 12 3050 3055 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로