$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] RNA interference may result in unexpected phenotypes in Caenorhabditis elegans 원문보기

Nucleic acids research, v.47 no.8, 2019년, pp.3957 - 3969  

De-Souza, Evandro A (Program in Molecular Biology, Federal University of Sã) ,  Camara, Henrique (o Paulo, Sã) ,  Salgueiro, Willian G (o Paulo 04044-020, Brazil) ,  Moro, Raíssa P (Program in Molecular Biology, Federal University of Sã) ,  Knittel, Thiago L (o Paulo, Sã) ,  Tonon, Guilherme (o Paulo 04044-020, Brazil) ,  Pinto, Silas (Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, Sã) ,  Pinca, Ana Paula F (o Paulo 13083-862, Brazil) ,  Antebi, Adam (Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, Sã) ,  Pasquinelli, Amy E (o Paulo 13083-862, Brazil) ,  Massirer, Katlin B (Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, Sã) ,  Mori, Marcelo A (o Paulo 13083-862, Brazil)

Abstract AI-Helper 아이콘AI-Helper

AbstractRNA interference (RNAi) is a valuable technique to determine gene function. In Caenorhabditis elegans, RNAi can be achieved by feeding worms bacteria carrying a plasmid expressing double-stranded RNA (dsRNA) targeting a gene of interest. The most commonly used plasmid vector for this purpose...

참고문헌 (62)

  1. 1. Wilson R.C. , Doudna J.A. Molecular mechanisms of RNA interference . Annu. Rev. Biophys. 2013 ; 42 : 217 – 239 . 23654304 

  2. 2. Aagaard L. , Rossi J.J. RNAi therapeutics: principles, prospects and challenges . Adv. Drug Deliv. Rev. 2007 ; 59 : 75 – 86 . 17449137 

  3. 3. Fire A. , Xu S. , Montgomery M.K. , Kostas S.A. , Driver S.E. , Mello C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans . Nature . 1998 ; 391 : 806 – 811 . 9486653 

  4. 4. Tabara H. , Yigit E. , Siomi H. , Mello C.C. The dsRNA binding protein RDE-4 interacts with RDE-1, DCR-1, and a DExH-box helicase to direct RNAi in C. elegans . Cell . 2002 ; 109 : 861 – 871 . 12110183 

  5. 5. Grishok A. , Pasquinelli A.E. , Conte D. , Li N. , Parrish S. , Ha I. , Baillie D.L. , Fire A. , Ruvkun G. , Mello C.C. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing . Cell . 2001 ; 106 : 23 – 34 . 11461699 

  6. 6. Bernstein E. , Caudy A.A. , Hammond S.M. , Hannon G.J. Role for a bidentate ribonuclease in the initiation step of RNA interference . Nature . 2001 ; 409 : 363 – 366 . 11201747 

  7. 7. Tabara H. , Sarkissian M. , Kelly W.G. , Fleenor J. , Grishok A. , Timmons L. , Fire A. , Mello C.C. The rde-1 gene, RNA interference, and transposon silencing in C. elegans . Cell . 1999 ; 99 : 123 – 132 . 10535731 

  8. 8. Zamore P.D. , Tuschl T. , Sharp P.A. , Bartel D.P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals . Cell . 2000 ; 101 : 25 – 33 . 10778853 

  9. 9. Timmons L. , Fire A. Specific interference by ingested dsRNA . Nature . 1998 ; 395 : 854 . 9804418 

  10. 10. Kamath R.S. , Fraser A.G. , Dong Y. , Poulin G. , Durbin R. , Gotta M. , Kanapin A. , Le Bot N. , Moreno S. , Sohrmann M. et al . Systematic functional analysis of the Caenorhabditis elegans genome using RNAi . Nature . 2003 ; 421 : 231 – 237 . 12529635 

  11. 11. Rual J.-F. , Ceron J. , Koreth J. , Hao T. , Nicot A.-S. , Hirozane-Kishikawa T. , Vandenhaute J. , Orkin S.H. , Hill D.E. , van den Heuvel S. et al . Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library . Genome Res. 2004 ; 14 : 2162 – 2168 . 15489339 

  12. 12. Timmons L. , Court D.L. , Fire A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans . Gene . 2001 ; 263 : 103 – 112 . 11223248 

  13. 13. Chalfie M. , Tu Y. , Euskirchen G. , Ward W.W. , Prasher D.C. Green fluorescent protein as a marker for gene expression . Science . 1994 ; 263 : 802 – 805 . 8303295 

  14. 14. Lehner B. , Calixto A. , Crombie C. , Tischler J. , Fortunato A. , Chalfie M. , Fraser A.G. Loss of LIN-35, the Caenorhabditis elegans ortholog of the tumor suppressor p105Rb, results in enhanced RNA interference . Genome Biol. 2006 ; 7 : R4 . 16507136 

  15. 15. Massirer K.B. , Perez S.G. , Mondol V. , Pasquinelli A.E. The miR-35-41 family of microRNAs regulates RNAi sensitivity in Caenorhabditis elegans . PLoS Genet. 2012 ; 8 : e1002536 . 22412382 

  16. 16. Alvarez-Saavedra E. , Horvitz H.R. Many families of C. elegans microRNAs are not essential for development or viability . Curr. Biol. 2010 ; 20 : 367 – 373 . 20096582 

  17. 17. McJunkin K. , Ambros V. The embryonic mir-35 family of microRNAs promotes multiple aspects of fecundity in Caenorhabditis elegans . G3 (Bethesda). 2014 ; 4 : 1747 – 1754 . 25053708 

  18. 18. Grishok A. , Sinskey J.L. , Sharp P.A. Transcriptional silencing of a transgene by RNAi in the soma of C. elegans . Genes Dev. 2005 ; 19 : 683 – 696 . 15741313 

  19. 19. Timmons L. , Tabara H. , Mello C.C. , Fire A.Z. Inducible systemic RNA silencing in Caenorhabditis elegans . Mol. Biol. Cell . 2003 ; 14 : 2972 – 2983 . 12857879 

  20. 20. Brenner S. The genetics of Caenorhabditis elegans . Genetics . 1974 ; 77 : 71 – 94 . 4366476 

  21. 21. Pinto S. , Sato V.N. , De-Souza E.A. , Ferraz R.C. , Camara H. , Pinca A.P.F. , Mazzotti D.R. , Lovci M.T. , Tonon G. , Lopes-Ramos C.M. et al . Enoxacin extends lifespan of C. elegans by inhibiting miR-34-5p and promoting mitohormesis . Redox Biol. 2018 ; 18 : 84 – 92 . 29986212 

  22. 22. Gamerdinger M. , Hanebuth M.A. , Frickey T. , Deuerling E. The principle of antagonism ensures protein targeting specificity at the endoplasmic reticulum . Science . 2015 ; 348 : 201 – 207 . 25859040 

  23. 23. van den Ecker D. , van den Brand M.A. , Ariaans G. , Hoffmann M. , Bossinger O. , Mayatepek E. , Nijtmans L.G. , Distelmaier F. Identification and functional analysis of mitochondrial complex I assembly factor homologues in C. elegans . Mitochondrion . 2012 ; 12 : 399 – 405 . 22387847 

  24. 24. Ayyadevara S. , Balasubramaniam M. , Gao Y. , Yu L.-R. , Alla R. , Shmookler Reis R. Proteins in aggregates functionally impact multiple neurodegenerative disease models by forming proteasome-blocking complexes . Aging Cell . 2015 ; 14 : 35 – 48 . 25510159 

  25. 25. Nakamura S. , Karalay Ö. , Jäger P.S. , Horikawa M. , Klein C. , Nakamura K. , Latza C. , Templer S.E. , Dieterich C. , Antebi A. Mondo complexes regulate TFEB via TOR inhibition to promote longevity in response to gonadal signals . Nat. Commun. 2016 ; 7 : 10944 . 27001890 

  26. 26. Ferraz R.C. , Camara H. , De-Souza E.A. , Pinto S. , Pinca A.P.F. , Silva R.C. , Sato V.N. , Castilho B.A. , Mori M.A. IMPACT is a GCN2 inhibitor that limits lifespan in Caenorhabditis elegans . BMC Biol. 2016 ; 14 : 87 . 27717342 

  27. 27. Mori M.A. , Raghavan P. , Thomou T. , Boucher J. , Robida-Stubbs S. , Macotela Y. , Russell S.J. , Kirkland J.L. , Blackwell T.K. , Kahn C.R. Role of microRNA processing in adipose tissue in stress defense and longevity . Cell Metab. 2012 ; 16 : 336 – 347 . 22958919 

  28. 28. Berman J.R. , Kenyon C. Germ-cell loss extends C. elegans life span through regulation of DAF-16 by kri-1 and lipophilic-hormone signaling . Cell . 2006 ; 124 : 1055 – 1068 . 16530050 

  29. 29. Mueller M.M. , Castells-Roca L. , Babu V. , Ermolaeva M.A. , Müller R.-U. , Frommolt P. , Williams A.B. , Greiss S. , Schneider J.I. , Benzing T. et al . DAF-16/FOXO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage . Nat. Cell Biol. 2014 ; 16 : 1168 – 1179 . 25419847 

  30. 30. McCormick M. , Chen K. , Ramaswamy P. , Kenyon C. New genes that extend Caenorhabditis elegans’ lifespan in response to reproductive signals . Aging Cell . 2012 ; 11 : 192 – 202 . 22081913 

  31. 31. Shen Y. , Wollam J. , Magner D. , Karalay O. , Antebi A. A steroid receptor-microRNA switch regulates life span in response to signals from the gonad . Science . 2012 ; 338 : 1472 – 1476 . 23239738 

  32. 32. Steinbaugh M.J. , Narasimhan S.D. , Robida-Stubbs S. , Moronetti Mazzeo L.E. , Dreyfuss J.M. , Hourihan J.M. , Raghavan P. , Operaña T.N. , Esmaillie R. , Blackwell T.K. Lipid-mediated regulation of SKN-1/Nrf in response to germ cell absence . Elife . 2015 ; 4 : e07836 . 

  33. 33. Kenyon C.J. The genetics of ageing . Nature . 2010 ; 464 : 504 – 512 . 20336132 

  34. 34. Libina N. , Berman J.R. , Kenyon C. Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan . Cell . 2003 ; 115 : 489 – 502 . 14622602 

  35. 35. Liu J. , Rolef Ben-Shahar T. , Riemer D. , Treinin M. , Spann P. , Weber K. , Fire A. , Gruenbaum Y. Essential roles for Caenorhabditis elegans lamin gene in nuclear organization, cell cycle progression, and spatial organization of nuclear pore complexes . Mol. Biol. Cell . 2000 ; 11 : 3937 – 3947 . 11071918 

  36. 36. Woo W.-M. , Goncharov A. , Jin Y. , Chisholm A.D. Intermediate filaments are required for C. elegans epidermal elongation . Dev. Biol. 2004 ; 267 : 216 – 229 . 14975728 

  37. 37. Spartz A.K. , Herman R.K. , Shaw J.E. SMU-2 and SMU-1, Caenorhabditis elegans homologs of mammalian spliceosome-associated proteins RED and fSAP57, work together to affect splice site choice . Mol. Cell. Biol. 2004 ; 24 : 6811 – 6823 . 15254247 

  38. 38. Wang J. , Tokarz R. , Savage-Dunn C. The expression of TGFbeta signal transducers in the hypodermis regulates body size in C. elegans . Development . 2002 ; 129 : 4989 – 4998 . 12397107 

  39. 39. Maduro M.F. , Broitman-Maduro G. , Choi H. , Carranza F. , Wu A.C.-Y. , Rifkin S.A. MED GATA factors promote robust development of the C. elegans endoderm . Dev. Biol. 2015 ; 404 : 66 – 79 . 25959238 

  40. 40. Muñoz-Jiménez C. , Ayuso C. , Dobrzynska A. , Torres-Mendéz A. , Ruiz P.D.L.C. , Askjaer P. An efficient FLP-Based toolkit for spatiotemporal control of gene expression in Caenorhabditis elegans . Genetics . 2017 ; 206 : 1763 – 1778 . 28646043 

  41. 41. Lu R. , Yigit E. , Li W.-X. , Ding S.-W. An RIG-I-Like RNA helicase mediates antiviral RNAi downstream of viral siRNA biogenesis in Caenorhabditis elegans . PLoS Pathog. 2009 ; 5 : e1000286 . 19197349 

  42. 42. Long T. , Meng F. , Lu R. Transgene-Assisted genetic screen identifies rsd-6 and novel genes as key components of antiviral RNA interference in Caenorhabditis elegans . J. Virol. 2018 ; 92 : e00416-18 . 29950414 

  43. 43. Liu M. , Liu P. , Zhang L. , Cai Q. , Gao G. , Zhang W. , Zhu Z. , Liu D. , Fan Q. mir-35 is involved in intestine cell G1/S transition and germ cell proliferation in C. elegans . Cell Res. 2011 ; 21 : 1605 – 1618 . 21691303 

  44. 44. Miska E.A. , Alvarez-Saavedra E. , Abbott A.L. , Lau N.C. , Hellman A.B. , McGonagle S.M. , Bartel D.P. , Ambros V.R. , Horvitz H.R. Most Caenorhabditis elegans microRNAs are individually not essential for development or viability . PLoS Genet. 2007 ; 3 : e215 . 18085825 

  45. 45. Ketting R.F. , Haverkamp T.H.A. , van Luenen H.G. , Plasterk R.H.A. Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD . Cell . 1999 ; 99 : 133 – 141 . 10535732 

  46. 46. Kumsta C. , Hansen M. C. elegans rrf-1 mutations maintain RNAi efficiency in the soma in addition to the germline . PLoS One . 2012 ; 7 : e35428 . 22574120 

  47. 47. Sijen T. , Fleenor J. , Simmer F. , Thijssen K.L. , Parrish S. , Timmons L. , Plasterk R.H.A. , Fire A. On the role of RNA amplification in dsRNA-triggered gene silencing . Cell . 2001 ; 107 : 465 – 476 . 11719187 

  48. 48. Tijsterman M. , May R.C. , Simmer F. , Okihara K.L. , Plasterk R.H.A. Genes required for systemic RNA interference in Caenorhabditis elegans . Curr. Biol. 2004 ; 14 : 111 – 116 . 14738731 

  49. 49. Hsieh P.N. , Zhou G. , Yuan Y. , Zhang R. , Prosdocimo D.A. , Sangwung P. , Borton A.H. , Boriushkin E. , Hamik A. , Fujioka H. et al . A conserved KLF-autophagy pathway modulates nematode lifespan and mammalian age-associated vascular dysfunction . Nat. Commun. 2017 ; 8 : 914 . 29030550 

  50. 50. Kelly W.G. , Xu S. , Montgomery M.K. , Fire A. Distinct requirements for somatic and germline expression of a generally expressed Caernorhabditis elegans gene . Genetics . 1997 ; 146 : 227 – 238 . 9136012 

  51. 51. Sturm Á. , Saskoi É. , Tibor K. , Weinhardt N. , Vellai T. Highly efficient RNAi and Cas9-based auto-cloning systems for C. elegans research . Nucleic Acids Res. 2018 ; 46 : e105 . 29924347 

  52. 52. Lau N.C. , Lim L.P. , Weinstein E.G. , Bartel D.P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans . Science . 2001 ; 294 : 858 – 862 . 11679671 

  53. 53. Stoeckius M. , Maaskola J. , Colombo T. , Rahn H.-P. , Friedländer M.R. , Li N. , Chen W. , Piano F. , Rajewsky N. Large-scale sorting of C. elegans embryos reveals the dynamics of small RNA expression . Nat. Methods . 2009 ; 6 : 745 – 751 . 19734907 

  54. 54. Akay A. , Craig A. , Lehrbach N. , Larance M. , Pourkarimi E. , Wright J.E. , Lamond A. , Miska E. , Gartner A. RNA-binding protein GLD-1/quaking genetically interacts with the mir-35 and the let-7 miRNA pathways in Caenorhabditis elegans . Open Biol. 2013 ; 3 : 130151 . 24258276 

  55. 55. Fujiwara M. , Sengupta P. , McIntire S.L. Regulation of body size and behavioral state of C. elegans by sensory perception and the EGL-4 cGMP-dependent protein kinase . Neuron . 2002 ; 36 : 1091 – 1102 . 12495624 

  56. 56. Yogindran S. , Rajam M.V. Artificial miRNA-mediated silencing of ecdysone receptor (EcR) affects larval development and oogenesis in Helicoverpa armigera . Insect Biochem. Mol. Biol. 2016 ; 77 : 21 – 30 . 27476930 

  57. 57. Osińska M. , Wiejak J. , Wypych E. , Bilski H. , Bartosiewicz R. , Wyroba E. Distinct expression, localization and function of two Rab7 proteins encoded by paralogous genes in a free-living model eukaryote . Acta Biochim. Pol. 2011 ; 58 : 597 – 607 . 22030555 

  58. 58. Schumpert C.A. , Dudycha J.L. , Patel R.C. Development of an efficient RNA interference method by feeding for the microcrustacean Daphnia . BMC Biotechnol. 2015 ; 15 : 91 . 26446824 

  59. 59. Rivera A.S. , Hammel J.U. , Haen K.M. , Danka E.S. , Cieniewicz B. , Winters I.P. , Posfai D. , Wörheide G. , Lavrov D. V , Knight S.W. et al . RNA interference in marine and freshwater sponges: actin knockdown in Tethya wilhelma and Ephydatia muelleri by ingested dsRNA expressing bacteria . BMC Biotechnol. 2011 ; 11 : 67 . 21679422 

  60. 60. Sheng X. , Zeng H. , Zhang M. , Yun M.X. , Yin F. , Gu F.K. Influences of the interference of γ-tubulin gene expression on the morphology and microtubules of ciliate Euplotes eurystomus . Zoolog. Sci. 2011 ; 28 : 476 – 481 . 21728795 

  61. 61. Vatanparast M. , Kim Y. Optimization of recombinant bacteria expressing dsRNA to enhance insecticidal activity against a lepidopteran insect, Spodoptera exigua . PLoS One . 2017 ; 12 : e0183054 . 28800614 

  62. 62. Ganbaatar O. , Cao B. , Zhang Y. , Bao D. , Bao W. , Wuriyanghan H. Knockdown of Mythimna separata chitinase genes via bacterial expression and oral delivery of RNAi effectors . BMC Biotechnol. 2017 ; 17 : 9 . 28183289 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로