$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] MCC-CKF: A Distance Constrained Kalman Filter Method for Indoor TOA Localization Applications 원문보기

Electronics, v.8 no.5, 2019년, pp.478 -   

Xu, Cheng (School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China) ,  Ji, Mengmeng (School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China) ,  Qi, Yue (School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China) ,  Zhou, Xinghang (School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China)

Abstract AI-Helper 아이콘AI-Helper

Non-Gaussian noise may have a negative impact on the performance of the Kalman filter (KF), due to its adoption of only second-order statistical information. Thus, KF is not first priority in applications with non-Gaussian noises. The indoor positioning based on arrival of time (TOA) has large error...

참고문헌 (36)

  1. 10.1007/978-3-642-04385-7_16 Amundson, I., and Koutsoukos, X.D. (2009). A Survey on Localization for Mobile Wireless Sensor Networks, Springer. Mobile Entity Localization and Tracking in GPS-Less Environnments. 

  2. 10.1109/VTCFall.2013.6692388 Wang, Y., Zheng, F., Wiemeler, M., Xiong, W., and Kaiser, T. (2013, January 2-5). Reference selection for hybrid toa/rss linear least squares localization. Proceedings of the 2013 IEEE 78th Vehicular Technology Conference (VTC Fall), Las Vegas, NV, USA. 

  3. Park Robust time-of-arrival source localization employing error covariance of sample mean and sample median in line-of-sight/non-line-of-sight mixture environments EURASIP J. Adv. Signal Process. 2016 10.1186/s13634-016-0385-4 2016 89 

  4. Xu Geometrical kinematic modeling on human motion using method of multi-sensor fusion Inf. Fusion 2018 10.1016/j.inffus.2017.09.014 41 243 

  5. Heidari UDP identification and error mitigation in ToA-based indoor localization systems using neural network architecture IEEE Trans. Wirel. Commun. 2009 10.1109/TWC.2009.080415 8 3597 

  6. Marano NLOS identification and mitigation for localization based on UWB experimental data IEEE J. Sel. Areas Commun. 2010 10.1109/JSAC.2010.100907 28 1026 

  7. Tomic Target localization in NLOS environments using RSS and TOA measurements IEEE Wirel. Commun. Lett. 2018 10.1109/LWC.2018.2858248 7 1062 

  8. (2019, April 09). DecaWave Website. Available online: https://www.decawave.com/. 

  9. (2019, April 09). Nanotron Website. Available online: https://nanotron.com/EN/. 

  10. He CC-KF: Enhanced TOA performance in multipath and NLOS indoor extreme environment IEEE Sens. J. 2014 10.1109/JSEN.2014.2328353 14 3766 

  11. Yang NLOS Mitigation for UWB Localization Based on Sparse Pseudo-Input Gaussian Process IEEE Sens. J. 2018 10.1109/JSEN.2018.2818158 18 4311 

  12. Wu Automatic radio map adaptation for indoor localization using smartphones IEEE Trans. Mob. Comput. 2018 10.1109/TMC.2017.2737004 17 517 

  13. Khodjaev Survey of NLOS identification and error mitigation problems in UWB-based positioning algorithms for dense environments Ann. Telecommun.-Annales Des TéLéCommun. 2010 10.1007/s12243-009-0124-z 65 301 

  14. 10.5772/9585 Wann, C.D. (2010). Kalman Filtering for NLOS Mitigation and Target Tracking in Indoor Wireless Environment, InTechOpen. Kalman Filter. 

  15. Xu Toward Near-Ground Localization: Modeling and Applications for TOA Ranging Error IEEE Trans. Antennas Propag. 2017 10.1109/TAP.2017.2742551 65 5658 

  16. Xu InnoHAR: A Deep Neural Network for Complex Human Activity Recognition IEEE Access 2019 10.1109/ACCESS.2018.2890675 7 9893 

  17. Kalman A new approach to linear filtering and prediction problems J. Basic Eng. 1960 10.1115/1.3662552 82 35 

  18. Schick Robust recursive estimation in the presence of heavy-tailed observation noise Ann. Stat. 1994 10.1214/aos/1176325511 22 1045 

  19. 10.1109/CISS.2016.7460553 Izanloo, R., Fakoorian, S.A., Yazdi, H.S., and Simon, D. (2016, January 16-18). Kalman filtering based on the maximum correntropy criterion in the presence of non-Gaussian noise. Proceedings of the 2016 Annual Conference on Information Science and Systems (CISS), Princeton, NJ, USA. 

  20. Ma Diffusion maximum correntropy criterion algorithms for robust distributed estimation Digit. Signal Process. 2016 10.1016/j.dsp.2016.07.009 58 10 

  21. Fakoorian, S., Moosavi, M., Izanloo, R., Azimi, V., and Simon, D. (2017, January 11-13). Maximum Correntropy Criterion Constrained Kalman Filter. Proceedings of the ASME 2017 Dynamic Systems and Control Conference, Tysons, VA, USA. V002T04A008. 

  22. Momtaz NLOS Identification in Range-Based Source Localization: Statistical Approach IEEE Sens. J. 2018 10.1109/JSEN.2018.2810257 18 3745 

  23. Larson, D.L., and Wandelt, B.D. (2005). A statistically robust 3-sigma detection of non-Gaussianity in the WMAP data using hot and cold spots. arXiv. 

  24. Liu Correntropy: Properties and applications in non-Gaussian signal processing IEEE Trans. Signal Process. 2007 10.1109/TSP.2007.896065 55 5286 

  25. He Maximum Correntropy Criterion for Robust Face Recognition IEEE Trans. Pattern Anal. Mach. Intell. 2010 33 1561 

  26. 10.1109/WCSP.2010.5633466 Deng, Z., Yu, Y., Guan, W., and He, L. (2010, January 21-23). NLOS error mitigation based on modified Kaiman filter for mobile location in cellular networks. Proceedings of the 2010 International Conference on Wireless Communications and Signal Processing (WCSP), Suzhou, China. 

  27. 10.1007/978-1-4419-1570-2 Principe, J.C. (2010). Information Theoretic Learning: Renyi’s Entropy and Kernel Perspectives, Springer Science & Business Media. 

  28. Chen Recursive robust least squares support vector regression based on maximum correntropy criterion Neurocomputing 2012 10.1016/j.neucom.2012.05.004 97 63 

  29. Chen Maximum correntropy Kalman filter Automatica 2017 10.1016/j.automatica.2016.10.004 76 70 

  30. Bar-Shalom, Y., Li, X.R., and Kirubarajan, T. (2004). Estimation With Applications to Tracking and Navigation: Theory Algorithms and Software, John Wiley & Sons. 

  31. 10.1177/1550147716683827 Park, C.-H., and Chang, J.-H. (2016). TOA Source Localization Based on Weighted Least Square Estimator in LOS/NLOS Mixture Environments. Int. J. Distrib. Sens. Netw., 9. 

  32. 10.1109/IIH-MSP.2009.167 Wang, L.K., Hsieh, S.-C., Huang, K.-Y., and Wu, C.-C. (2009, January 12-14). Target tracking in clusters of sensor networks via handoff scheme with extended Kalman filter. Proceedings of the 2009 Fifth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Kyoto, Japan. 

  33. 10.1002/0470045345 Simon, D. (2006). Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches, John Wiley & Sons. 

  34. (2019, April 09). fmincon. Available online: https://baike.baidu.com/item/fmincon/17032570. 

  35. Sebastián, P.S.J., Virtanen, T., Garcia-Molla, V.M., and Vidal, A.M. (2018). Analysis of an efficient parallel implementation of active-set Newton algorithm. J. Supercomput., 1-12. 

  36. (2019, April 09). CVX Toolbox. Available online: http://cvxr.com/cvx/. 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로