$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Non-Cryogenic Structure and Dynamics of HIV-1 Integrase Catalytic Core Domain by X-ray Free-Electron Lasers 원문보기

International journal of molecular sciences, v.20 no.8, 2019년, pp.1943 -   

Park, Jae-Hyun (Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea) ,  Yun, Ji-Hye (jaehyun234@yonsei.ac.kr (J.-H.P.)) ,  Shi, Yingchen (jihye2@spin.yonsei.ac.kr (J.-H.Y.)) ,  Han, Jeongmin (jmhan@spin.yonsei.ac.kr (J.H.)) ,  Li, Xuanxuan (zyjin@spin.yonsei.ac.kr (Z.J.)) ,  Jin, Zeyu (thkim@spin.yonsei.ac.kr (T.K.)) ,  Kim, Taehee (Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea) ,  Park, Jaehyun (jaehyun234@yonsei.ac.kr (J.-H.P.)) ,  Park, Sehan (jihye2@spin.yonsei.ac.kr (J.-H.Y.)) ,  Liu, Haiguang (jmhan@spin.yonsei.ac.kr (J.H.)) ,  Lee, Weontae (zyjin@spin.yonsei.ac.kr (Z.J.))

Abstract AI-Helper 아이콘AI-Helper

HIV-1 integrase (HIV-1 IN) is an enzyme produced by the HIV-1 virus that integrates genetic material of the virus into the DNA of infected human cells. HIV-1 IN acts as a key component of the Retroviral Pre-Integration Complex (PIC). Protein dynamics could play an important role during the catalysis...

주제어

참고문헌 (55)

  1. 1. Kupitz C. OlmosJr J.L. Holl M. Tremblay L. Pande K. Pandey S. Oberthür D. Hunter M. Liang M. Aquila A. Structural enzymology using X-ray free electron lasers Struct. Dyn. 2017 4 044003 10.1063/1.4972069 28083542 

  2. 2. Boutet S. Lomb L. Williams G.J. Barends T.R.M. Aquila A. Doak R.B. Weierstall U. DePonte D.P. Steinbrener J. Shoeman R.L. High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography Science 2012 337 362 364 10.1126/science.1217737 22653729 

  3. 3. Schmidt M. Mix and Inject: Reaction Initiation by Diffusion for Time-Resolved Macromolecular Crystallography Adv. Condens. Matter Phys. 2013 2013 10 10.1155/2013/167276 

  4. 4. Calvey G.D. Katz A.M. Schaffer C.B. Pollack L. Mixing injector enables time-resolved crystallography with high hit rate at X-ray free electron lasers Struct. Dyn. 2016 3 054301 10.1063/1.4961971 27679802 

  5. 5. Stagno J.R. Liu Y. Bhandari Y.R. Conrad C.E. Panja S. Swain M. Fan L. Nelson G. Li C. Wendel D.R. Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography Nature 2016 541 242 10.1038/nature20599 27841871 

  6. 6. Bushman F. Fujiwara T. Craigie R. Retroviral DNA integration directed by HIV integration protein in vitro Science 1990 249 1555 1558 10.1126/science.2171144 2171144 

  7. 7. LaFemina R.L. Schneider C.L. Robbins H.L. Callahan P.L. LeGrow K. Roth E. Schleif W.A. Emini E.A. Requirement of active human immunodeficiency virus type 1 integrase enzyme for productive infection of human T-lymphoid cells J. Virol. 1992 66 7414 7419 1433523 

  8. 8. Turlure F. Devroe E. Silver P.A. Engelman A. Human cell proteins and human immunodeficiency virus DNA integration Front. Biosci. 2004 9 208 10.2741/1472 

  9. 9. Brown P.O. Bowerman B. Varmus H.E. Bishop J.M. Retroviral integration: Structure of the initial covalent product and its precursor, and a role for the viral IN protein Proc. Natl. Acad. Sci. USA 1989 86 2525 2529 10.1073/pnas.86.8.2525 2539592 

  10. 10. Craigie R. Fujiwara T. Bushman F. The IN protein of Moloney murine leukemia virus processes the viral DNA ends and accomplishes their integration in vitro Cell 1990 62 829 837 10.1016/0092-8674(90)90126-Y 2167180 

  11. 11. Sherman P.A. Fyfe J.A. Human immunodeficiency virus integration protein expressed in Escherichia coli possesses selective DNA cleaving activity Proc. Natl. Acad. Sci. USA 1990 87 5119 5123 10.1073/pnas.87.13.5119 2164223 

  12. 12. Katz R.A. Merkel G. Kulkosky J. Leis J. Skalka A.M. The avian retroviral IN protein is both necessary and sufficient for integrative recombination in vitro Cell 1990 63 87 95 10.1016/0092-8674(90)90290-U 2170022 

  13. 13. Bushman F.D. Craigie R. Activities of human immunodeficiency virus (HIV) integration protein in vitro: Specific cleavage and integration of HIV DNA Proc. Natl. Acad. Sci. USA 1991 88 1339 1343 10.1073/pnas.88.4.1339 1847518 

  14. 14. Markowitz M. Morales-Ramirez J.O. Nguyen B.-Y. Kovacs C.M. Steigbigel R.T. Cooper D.A. Liporace R. Schwartz R. Isaacs R. Gilde L.R. Antiretroviral Activity, Pharmacokinetics, and Tolerability of MK-0518, a Novel Inhibitor of HIV-1 Integrase, Dosed As Monotherapy for 10 Days in Treatment-Naive HIV-1-Infected Individuals JAIDS J. Acquir. Immune Defic. Syndr. 2006 43 509 515 10.1097/QAI.0b013e31802b4956 17133211 

  15. 15. Savarino A. A historical sketch of the discovery and development of HIV-1 integrase inhibitors Expert Opin. Investig. Drugs 2006 15 1507 1522 10.1517/13543784.15.12.1507 

  16. 16. Sax P.E. DeJesus E. Mills A. Zolopa A. Cohen C. Wohl D. Gallant J.E. Liu H.C. Zhong L. Yale K. Co-formulated elvitegravir, cobicistat, emtricitabine, and tenofovir versus co-formulated efavirenz, emtricitabine, and tenofovir for initial treatment of HIV-1 infection: A randomised, double-blind, phase 3 trial, analysis of results after 48 weeks Lancet 2012 379 2439 2448 10.1016/S0140-6736(12)60917-9 22748591 

  17. 17. Esposito D. Craigie R. HIV Integrase Structure and Function Advances in Virus Research Rlaramorosch K. Murphy F.A. Shawn A.J. Academic Press Cambridge, MA, USA 1999 Volume 52 319 333 

  18. 18. Chiu T.K. Davies D.R. Structure and Function of HIV-1 Integrase Curr. Top. Med. Chem. 2004 4 965 977 10.2174/1568026043388547 15134551 

  19. 19. Kulkosky J. Jones K.S. Katz R.A. Mack J.P. Skalka A.M. Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases Mol. Cell. Biol. 1992 12 2331 2338 10.1128/MCB.12.5.2331 1314954 

  20. 20. Dyda F. Hickman A. Jenkins T. Engelman A. Craigie R. Davies D. Crystal structure of the catalytic domain of HIV-1 integrase: Similarity to other polynucleotidyl transferases Science 1994 266 1981 1986 10.1126/science.7801124 7801124 

  21. 21. Goldgur Y. Dyda F. Hickman A.B. Jenkins T.M. Craigie R. Davies D.R. Three new structures of the core domain of HIV-1 integrase: An active site that binds magnesium Proc. Natl. Acad. Sci. USA 1998 95 9150 9154 10.1073/pnas.95.16.9150 9689049 

  22. 22. Goldgur Y. Craigie R. Cohen G.H. Fujiwara T. Yoshinaga T. Fujishita T. Sugimoto H. Endo T. Murai H. Davies D.R. Structure of the HIV-1 integrase catalytic domain complexed with an inhibitor: A platform for antiviral drug design Proc. Natl. Acad. Sci. USA 1999 96 13040 13043 10.1073/pnas.96.23.13040 10557269 

  23. 23. Passos D.O. Li M. Yang R. Rebensburg S.V. Ghirlando R. Jeon Y. Shkriabai N. Kvaratskhelia M. Craigie R. Lyumkis D. Cryo-EM structures and atomic model of the HIV-1 strand transfer complex intasome Science 2017 355 89 92 10.1126/science.aah5163 28059769 

  24. 24. Hare S. Vos A.M. Clayton R.F. Thuring J.W. Cummings M.D. Cherepanov P. Molecular mechanisms of retroviral integrase inhibition and the evolution of viral resistance Proc. Natl. Acad. Sci. USA 2010 107 20057 20062 10.1073/pnas.1010246107 21030679 

  25. 25. Hare S. Gupta S.S. Valkov E. Engelman A. Cherepanov P. Retroviral intasome assembly and inhibition of DNA strand transfer Nature 2010 464 232 10.1038/nature08784 20118915 

  26. 26. Hare S. Shun M.-C. Gupta S.S. Valkov E. Engelman A. Cherepanov P. A Novel Co-Crystal Structure Affords the Design of Gain-of-Function Lentiviral Integrase Mutants in the Presence of Modified PSIP1/LEDGF/p75 PLOS Pathog. 2009 5 e1000259 10.1371/journal.ppat.1000259 19132083 

  27. 27. Neutze R. Wouts R. van der Spoel D. Weckert E. Hajdu J. Potential for biomolecular imaging with femtosecond X-ray pulses Nature 2000 406 752 10.1038/35021099 10963603 

  28. 28. Carugo O. Bordo D. How many water molecules can be detected by protein crystallography? Acta Crystallogr. Sect. D 1999 55 479 483 10.1107/S0907444998012086 10089359 

  29. 29. Delelis O. Carayon K. Saïb A. Deprez E. Mouscadet J.-F. Integrase and integration: Biochemical activities of HIV-1 integrase Retrovirology 2008 5 114 10.1186/1742-4690-5-114 19091057 

  30. 30. Marchand C. Kiselev E. Marler L. Métifiot M. Pommier Y. Johnson B.C. Hughes S.H. Burke T.R. Jr. Zhao X.Z. Selectivity for strand-transfer over 3′-processing and susceptibility to clinical resistance of HIV-1 integrase inhibitors are driven by key enzyme–DNA interactions in the active site Nucleic Acids Res. 2016 44 6896 6906 27369381 

  31. 31. Hare S. Maertens G.N. Cherepanov P. 3′-Processing and strand transfer catalysed by retroviral integrase in crystallo EMBO J. 2012 31 3020 3028 10.1038/emboj.2012.118 22580823 

  32. 32. Cherepanov P. Ambrosio A.L.B. Rahman S. Ellenberger T. Engelman A. Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75 Proc. Natl. Acad. Sci. USA 2005 102 17308 17313 10.1073/pnas.0506924102 16260736 

  33. 33. Fitzkee N.C. Masse J.E. Shen Y. Davies D.R. Bax A. Solution Conformation and Dynamics of the HIV-1 Integrase Core Domain J. Biol. Chem. 2010 285 18072 18084 10.1074/jbc.M110.113407 20363759 

  34. 34. Jenkins T.M. Engelman A. Ghirlando R. Craigie R. A Soluble Active Mutant of HIV-1 Integrase: INVOLVEMENT OF BOTH THE CORE AND CARBOXYL-TERMINAL DOMAINS IN MULTIMERIZATION J. Biol. Chem. 1996 271 7712 7718 10.1074/jbc.271.13.7712 8631811 

  35. 35. Choi S. Attri P. Lee I. Oh J. Yun J.-H. Park J.H. Choi E.H. Lee W. Structural and functional analysis of lysozyme after treatment with dielectric barrier discharge plasma and atmospheric pressure plasma jet Sci. Rep. 2017 7 1027 10.1038/s41598-017-01030-w 28432354 

  36. 36. Asante-Appiah E. Skalka A.M. A Metal-induced Conformational Change and Activation of HIV-1 Integrase J. Biol. Chem. 1997 272 16196 16205 10.1074/jbc.272.26.16196 9195919 

  37. 37. O’Connor D.A. Thermal Vibrations in Crystallography Phys. Bull. 1975 26 498 499 10.1088/0031-9112/26/11/033 

  38. 38. Barty A. Caleman C. Aquila A. Timneanu N. Lomb L. White T.A. Andreasson J. Arnlund D. Bajt S. Barends T.R.M. Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements Nat. Photonics 2011 6 35 10.1038/nphoton.2011.297 

  39. 39. Liu W. Wacker D. Gati C. Han G.W. James D. Wang D. Nelson G. Weierstall U. Katritch V. Barty A. Serial Femtosecond Crystallography of G Protein–Coupled Receptors Science 2013 342 1521 1524 10.1126/science.1244142 24357322 

  40. 40. Fromme R. Ishchenko A. Metz M. Chowdhury S.R. Basu S. Boutet S. Fromme P. White T.A. Barty A. Spence J.C.H. Serial femtosecond crystallography of soluble proteins in lipidic cubic phase IUCrJ 2015 2 545 551 10.1107/S2052252515013160 26306196 

  41. 41. Kang H.-S. Min C.-K. Heo H. Kim C. Yang H. Kim G. Nam I. Baek S.Y. Choi H.-J. Mun G. Hard X-ray free-electron laser with femtosecond-scale timing jitter Nat. Photonics 2017 11 708 713 10.1038/s41566-017-0029-8 

  42. 42. Park J. Kim S. Nam K.-H. Kim B. Ko I.S. Current status of the CXI beamline at the PAL-XFEL J. Korean Phys. Soc. 2016 69 1089 1093 10.3938/jkps.69.1089 

  43. 43. Park J. Kim S. Kim S. Nam K.H. Multifarious injection chamber for molecular structure study (MICOSS) system: Development and application for serial femtosecond crystallography at Pohang Accelerator Laboratory X-ray Free-Electron Laser J. Synchrotron Radiat. 2018 25 323 328 10.1107/S160057751800022X 29488909 

  44. 44. Kim J. Kim H.-Y. Park J. Kim S. Kim S. Rah S. Lim J. Nam K.H. Focusing X-ray free-electron laser pulses using Kirkpatrick-Baez mirrors at the NCI hutch of the PAL-XFEL J. Synchrotron Radiat. 2018 25 289 292 10.1107/S1600577517016186 29271778 

  45. 45. Mariani V. Morgan A. Yoon C.H. Lane T.J. White T.A. O’Grady C. Kuhn M. Aplin S. Koglin J. Barty A. OnDA: Online data analysis and feedback for serial X-ray imagingThis article will form part of a virtual special issue of the journal on free-electron laser software J. Appl. Crystallogr. 2016 49 1073 1080 10.1107/S1600576716007469 27275150 

  46. 46. Li X. Li C. Liu H. Click: A Visualization-Based Program for Preprocessing of Serial Crystallography Data, GitHub Repository Available online: https://github.com/LiuLab-CSRC/ClickX (accessed on 19 April 2019) 

  47. 47. Barty A. Kirian R.A. Maia F.R.N.C. Hantke M. Yoon C.H. White T.A. Chapman H. Cheetah: Software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data J. Appl. Crystallogr. 2014 47 1118 1131 10.1107/S1600576714007626 24904246 

  48. 48. White T.A. Kirian R.A. Martin A.V. Aquila A. Nass K. Barty A. Chapman H.N. CrystFEL: A software suite for snapshot serial crystallography J. Appl. Crystallogr. 2012 45 335 341 10.1107/S0021889812002312 

  49. 49. Emsley P. Cowtan K. Coot: Model-building tools for molecular graphics Acta Crystallogr. Sect. D 2004 60 2126 2132 10.1107/S0907444904019158 15572765 

  50. 50. Adams P.D. Afonine P.V. Bunkoczi G. Chen V.B. Davis I.W. Echols N. Headd J.J. Hung L.-W. Kapral G.J. Grosse-Kunstleve R.W. PHENIX: A comprehensive Python-based system for macromolecular structure solution Acta Crystallogr. Sect. D 2010 66 213 221 10.1107/S0907444909052925 20124702 

  51. 51. Attri P. Venkatesu P. Kumar A. Activity and stability of α-chymotrypsin in biocompatible ionic liquids: Enzyme refolding by triethyl ammonium acetate Phys. Chem. Chem. Phys. 2011 13 2788 2796 10.1039/C0CP01291B 21152617 

  52. 52. Park J.H. Kim M. Shiratani M. Cho A.E. Choi E.H. Attri P. Variation in structure of proteins by adjusting reactive oxygen and nitrogen species generated from dielectric barrier discharge jet Sci. Rep. 2016 6 35883 10.1038/srep35883 27779212 

  53. 53. Farrow N.A. Muhandiram R. Singer A.U. Pascal S.M. Kay C.M. Gish G. Shoelson S.E. Pawson T. Forman-Kay J.D. Kay L.E. Backbone Dynamics of a Free and a Phosphopeptide-Complexed Src Homology 2 Domain Studied by 15N NMR Relaxation Biochemistry 1994 33 5984 6003 10.1021/bi00185a040 7514039 

  54. 54. Grzesiek S. Bax A. The importance of not saturating water in protein NMR. Application to sensitivity enhancement and NOE measurements J. Am. Chem. Soc. 1993 115 12593 12594 10.1021/ja00079a052 

  55. 55. Kumar K.S.D. Gurusaran M. Satheesh S.N. Radha P. Pavithra S. Thulaa Tharshan K.P.S. Helliwell J.R. Sekar K. Online_DPI: A web server to calculate the diffraction precision index for a protein structure J. Appl. Crystallogr. 2015 48 939 942 10.1107/S1600576715006287 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로