$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Nanomaterial designing strategies related to cell lysosome and their biomedical applications: A review

Biomaterials, v.211, 2019년, pp.25 - 47  

Rathore, Bhowmira (Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University) ,  Sunwoo, Kyoung (Department of Chemistry, Korea University) ,  Jangili, Paramesh (Department of Chemistry, Korea University) ,  Kim, Jiseon (Department of Chemistry, Korea University) ,  Kim, Ji Hyeon (Department of Chemistry, Korea University) ,  Huang, Meina (Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University) ,  Xiong, Jia (Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University) ,  Sharma, Amit (Department of Chemistry, Korea University Republic of Korea<) ,  Yang, Zhigang ,  Qu, Junle ,  Kim, Jong Seung

Abstract AI-Helper 아이콘AI-Helper

Abstract Lysosomes, an important organelle of eukaryotic cells, are covered with the cell membrane and contain an array of degradative enzymes. The disrupt in lysosomal functions may lead to the development of severe diseases. In nanotechnology, nanomaterials working mechanism and its biomedical ou...

주제어

참고문헌 (96)

  1. Chem. Rev. Lim 115 327 2015 10.1021/cr300213b Nanomaterials for theranostics: recent advances and future challenges 

  2. J. Am. Chem. Soc. Wu 136 3579 2014 10.1021/ja412380j In Vivo and in Situ tracking cancer chemotherapy by highly photostable NIR fluorescent theranostic prodrug 

  3. Biomaterials Wu 120 1 2017 10.1016/j.biomaterials.2016.11.011 Real-time near-infrared bioimaging of a receptor-targeted cytotoxic dendritic theranostic agent 

  4. Chem. Soc. Rev. Lee 47 1 28 2018 10.1039/C7CS00557A Fluorogenic reaction-based prodrug conjugates as targeted cancer theranostics 

  5. For. Rep. Wilczewska 64 1020 2012 Nanoparticles as drug delivery systems, Pharmacol 

  6. Chem. Soc. Rev. Yang 42 530 2013 10.1039/C2CS35342C Nano-graphene in biomedicine: theranostic applications 

  7. Expert Opin. Biol. Ther. Rettig 7 799 2007 10.1517/14712598.7.6.799 Non-viral gene delivery: from the needle to the nucleus 

  8. Eur. J. Pharm. Biopharm. Breunig 68 112 2008 10.1016/j.ejpb.2007.06.010 Polymers and nanoparticles: intelligent tools for intracellular targeting? 

  9. Curr. Drug Metabol. Frohlich 14 976 2013 10.2174/1389200211314090004 Cellular targets and mechanisms in the cytotoxic action of non-biodegradable engineered nanoparticles 

  10. Adv. Drug Deliv. Rev. Anozie 122 65 2017 10.1016/j.addr.2017.01.001 Molecular links among non-biodegradable nanoparticles, reactive oxygen species, and autophagy 

  11. J. Control. Release Muro 164 125 2012 10.1016/j.jconrel.2012.05.052 Challenges in design and characterization of ligand-targeted drug delivery systems 

  12. Manthe 261 2014 Lysosomes and Nanotherapeutics: Diseases, Treatments, and Side Effects. Handbook of Nanobiomedical Research: Fundamentals, Applications and Recent Developments: Volume 2. Applications in Therapy 

  13. Org. Biomol. Chem. Hong 16 8025 2018 10.1039/C8OB01957F Synthesis and properties of a lysosome-targeting fluorescent ionophore based on coumarins and squaramides 

  14. Sen. Act. B Shen 256 261 2018 10.1016/j.snb.2017.10.103 A near-infrared lysosomal pH probe based on rhodamine derivative 

  15. Sen. Act. B Yu 252 313 2017 10.1016/j.snb.2017.05.164 Near-infrared lysosome pH tracker and naked-eye colorimetric nucleic acids sensor based on ruthenium complexes [Ru(bim)2(dppz)]2+ and [Ru(bim)2(pip)]2+ 

  16. Nat. Biotechnol. Blanco 33 941 2015 10.1038/nbt.3330 Principles of nanoparticle design for overcoming biological barriers to drug delivery 

  17. J. Colloid Interf. Sci. Chen 484 298 2016 10.1016/j.jcis.2016.09.009 Design and fabrication of fluorescence resonance energy transfer-mediated fluorescent polymer nanoparticles for ratiometric sensing of lysosomal pH 

  18. Angew. Chem. Int. Ed. Chen 57 12519 2018 10.1002/anie.201807373 Supramolecular assemblies with near-infrared emission mediated in two stages by cucurbituril and amphiphilic calixarene for lysosome-targeted cell imaging 

  19. Chem. Commun. Pramanik 53 12672 2017 10.1039/C7CC08185E Imaging cellular trafficking processes in real time using lysosome targeted up-conversion nanoparticles 

  20. ACS Appl. Bio Mater. Yuan 1 511 2018 10.1021/acsabm.8b00238 High-Yield method to fabricate and functionalize DNA nanoparticles from the products of rolling circle amplification 

  21. RSC Adv. Zeng 5 57725 2015 10.1039/C5RA07535A Fast and facile preparation of PEGylated graphene from graphene oxide by lysosome targeting delivery of photosensitizer to efficiently enhance photodynamic therapy 

  22. Chem. Commun. Xiang 52 148 2016 10.1039/C5CC07006F Tumor cell specific and lysosome-targeted delivery of nitric oxide for enhanced photodynamic therapy triggered by 808 nm near-infrared light 

  23. Chem. Soc. Rev. Sharma 48 771 2019 10.1039/C8CS00304A Hypoxia-targeted drug delivery 

  24. J. Mater. Chem. B Gangopadhyay 4 1862 2016 10.1039/C5TB02563J Fluorene-morpholine-based organic nanoparticles: lysosome-targeted pH-triggered two-photon photodynamic therapy with fluorescence switch on-off 

  25. ACS Appl. Mater. Inter. Hu 8 12039 2016 10.1021/acsami.6b02721 Engineering Lysosome-Targeting BODIPY nanoparticles for photoacoustic imaging and photodynamic therapy under Near-Infrared light 

  26. Oncogene Boya 27 6434 2008 10.1038/onc.2008.310 Lysosomal membrane permeabilization in cell death 

  27. Autophagy Bourdenx 12 472 2016 10.1080/15548627.2015.1136769 Nanoparticles restore lysosomal acidification defects: implications for Parkinson and other lysosomal-related diseases 

  28. Biochem. Soc. Trans. Serrano-Puebla 46 207 2018 10.1042/BST20170130 Lysosomal membrane permeabilization as a cell death mechanism in cancer cells 

  29. Traffic Wang 19 918 2018 10.1111/tra.12613 Lysosomal membrane permeabilization and cell death 

  30. Oncogene Boya 27 6434 2008 10.1038/onc.2008.310 Lysosomal membrane permeabilization in cell death 

  31. Mitochondrion Repnik 19 49 2014 10.1016/j.mito.2014.06.006 Lysosomal membrane permeabilization in cell death: concepts and challenges 

  32. Oncogene Jaattela 23 2746 2004 10.1038/sj.onc.1207513 Multiple cell death pathways as regulators of tumour initiation and progression 

  33. Chem. Commun. Gao 50 8117 2014 10.1039/c4cc03793f Targeting lysosomal membrane permeabilization to induce and image apoptosis in cancer cells by multifunctional Au-ZnO hybrid nanoparticles 

  34. Chem. Commun. Xue 53 842 2017 10.1039/C6CC08296C Tumor-targeted supramolecular nanoparticles self-assembled from a ruthenium-β-cyclodextrin complex and an adamantane-functionalized peptide 

  35. Chem. Soc. Rev. Zeng 46 5771 2017 10.1039/C7CS00195A The development of anticancer ruthenium(II) complexes: from single molecule compounds to nanomaterials 

  36. ACS Nano Sanchez 8 1350 2014 10.1021/nn404954s Targeting a G-protein-coupled receptor overexpressed in endocrine tumors by magnetic nanoparticles to induce cell death 

  37. J. Control. Release Clerc 270 120 2018 10.1016/j.jconrel.2017.11.050 Targeted magnetic intra-lysosomal hyperthermia produces lysosomal reactive oxygen species and causes caspase-1 dependent cell death 

  38. Nanoscale Cheng 9 17063 2017 10.1039/C7NR05450E A drug-self-gated and tumor microenvironment-responsive mesoporous silica vehicle:“four-in-one” versatile nanomedicine for targeted multidrug-resistant cancer therapy 

  39. Biomacromolecules Aluri 19 2166 2018 10.1021/acs.biomac.8b00334 Multistimuli-responsive amphiphilic poly (ester-urethane) nanoassemblies based on L-tyrosine for intracellular drug delivery to cancer cells 

  40. Chem Sharma 4 2370 2018 10.1016/j.chempr.2018.08.002 Overcoming drug resistance by targeting cancer bioenergetics with an activatable prodrug 

  41. RSC Adv. Wu 6 69083 2016 10.1039/C6RA04219H Biotinylated carboxymethyl chitosan/CaCO 3 hybrid nanoparticles for targeted drug delivery to overcome tumor drug resistance 

  42. Front. Physiol. Leanza 4 227 2013 10.3389/fphys.2013.00227 Intracellular ion channels and cancer 

  43. Chem. Commun. Ju 52 12598 2016 10.1039/C6CC06467A Embedding magnetic nanoparticles into coordination polymers to mimic zinc ion transporters for targeted tumor therapy 

  44. Mater. Sci. Eng. C Huang 70 763 2017 10.1016/j.msec.2016.09.052 Superparamagnetic iron oxide nanoparticles conjugated with folic acid for dual target-specific drug delivery and MRI in cancer theranostics 

  45. ACS Nano Lee 9 9859 2015 10.1021/acsnano.5b05138 Enhanced human epidermal growth factor receptor 2 degradation in breast cancer cells by lysosome-targeting gold nanoconstructs 

  46. Chem. Commun. Li 54 3520 2018 10.1039/C8CC00440D pH-Responsive spherical nucleic acid for intracellular lysosome imaging and an effective drug delivery system 

  47. Nat. Rev. Mol. Cell Biol. Futerman 5 554 2004 10.1038/nrm1423 The cell biology of lysosomal storage disorders 

  48. J. Cell Biol. Platt 199 723 2012 10.1083/jcb.201208152 Lysosomal storage disorders: the cellular impact of lysosomal dysfunction 

  49. Drug. Deliv. Transl. Re. Muro 2 169 2012 10.1007/s13346-012-0072-4 Strategies for delivery of therapeutics into the central nervous system for treatment of lysosomal storage disorders 

  50. Int. J. Mol. Med. Parenti 31 11 2013 10.3892/ijmm.2012.1187 New strategies for the treatment of lysosomal storage diseases (review) 

  51. Mol. Genet. Metabol. Brunetti-Pierri 94 391 2008 10.1016/j.ymgme.2008.04.012 GM1 gangliosidosis: review of clinical, molecular, and therapeutic aspects 

  52. ACS Omega Gupta 2 9002 2017 10.1021/acsomega.7b01230 Intracellular delivery of β-Galactosidase enzyme using Arginase-Responsive dextran Sulfate/Poly-l-arginine capsule for lysosomal storage disorder 

  53. Eur. J. Pharm. Biopharm. Donida 133 96 2018 10.1016/j.ejpb.2018.10.005 Monoolein-based nanoparticles for drug delivery to the central nervous system: a platform for lysosomal storage disorder treatment 

  54. Cell Zamore 101 25 2000 10.1016/S0092-8674(00)80620-0 RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals 

  55. J. Mater. Chem. B Li 4 6620 2016 10.1039/C6TB01462C Nanoparticle delivery systems for siRNA-based therapeutics 

  56. J. Nanomater. Guo 2011 11 2011 10.1155/2011/742895 Nanoparticles escaping RES and endosome: challenges for siRNA delivery for cancer therapy 

  57. J. Control. Release Chen 259 105 2017 10.1016/j.jconrel.2017.01.042 Tumor-targeted pH/redox dual-sensitive unimolecular nanoparticles for efficient siRNA delivery 

  58. Nanobiomedicine Berger 4 1 2017 10.1177/1849543517746259 Cytotoxicity assessment, inflammatory properties, and cellular uptake of Neutraplex lipid-based nanoparticles in THP-1 monocyte-derived macrophages 

  59. RSC Adv. Cerda 5 58345 2015 10.1039/C5RA06562C Enhancement of nucleic acid delivery to hard-to-transfect human colorectal cancer cells by magnetofection at laminin coated substrates and promotion of the endosomal/lysosomal escape 

  60. J. Control. Release Joris 269 266 2018 10.1016/j.jconrel.2017.11.019 Repurposing cationic amphiphilic drugs as adjuvants to induce lysosomal siRNA escape in nanogel transfected cells 

  61. Angew. Chem. Int. Ed. Yuan 54 11419 2015 10.1002/anie.201503640 A photoactivatable AIE polymer for light-controlled gene delivery: concurrent endo/lysosomal escape and DNA unpacking 

  62. Nanoscale Chen 7 14080 2015 10.1039/C5NR03527A Overcoming acquired drug resistance in colorectal cancer cells by targeted delivery of 5-FU with EGF grafted hollow mesoporous silica nanoparticles 

  63. Theranostics Zhou 7 764 2017 10.7150/thno.15757 Size-tunable Gd2O3@albumin nanoparticles conjugating chlorin e6 for magnetic resonance imaging-guided photo-induced therapy 

  64. Nanoscale Li 9 314 2017 10.1039/C6NR07004C A pH-responsive sequential-disassembly nanohybrid for mitochondrial targeting 

  65. Adv. Funct. Mater. Wang 28 1706124 2018 10.1002/adfm.201706124 Multifunctional shell-core nanoparticles for treatment of multidrug resistance hepatocellular carcinoma 

  66. Int. J. Nanomed. Liu 12 8085 2017 10.2147/IJN.S149070 Zinc oxide nanoparticles induce toxic responses in human neuroblastoma SHSY5Y cells in a size-dependent manner 

  67. ACS Nano Mirshafiee 12 3836 2018 10.1021/acsnano.8b01086 Toxicological profiling of metal oxide nanoparticles in liver context reveals pyroptosis in Kupffer cells and macrophages versus apoptosis in hepatocytes 

  68. RSC Adv. Ge 6 21725 2016 10.1039/C6RA01625A Europium-doped NaYF4 nanoparticles cause the necrosis of primary mouse bone marrow stromal cells through lysosome damage 

  69. Genes Dev. Mizushima 21 2861 2007 10.1101/gad.1599207 Autophagy: process and function 

  70. J. Pathol. Glick 221 3 2010 10.1002/path.2697 Autophagy: cellular and molecular mechanisms 

  71. FEBS J. Mrschtik 282 1858 2015 10.1111/febs.13253 Lysosomal proteins in cell death and autophagy 

  72. J. Cell Sci. Nakamura 130 1209 2017 10.1242/jcs.196352 New insights into autophagosome-lysosome fusion 

  73. Toxicol. Lett. Wan 221 118 2013 10.1016/j.toxlet.2013.06.208 Single-walled carbon nanotubes and graphene oxides induce autophagosome accumulation and lysosome impairment in primarily cultured murine peritoneal macrophages 

  74. Autophagy Cohignac 14 1323 2018 10.1080/15548627.2018.1474993 Carbon nanotubes, but not spherical nanoparticles, block autophagy by a shape-related targeting of lysosomes in murine macrophages 

  75. Nano Lett. Xue 14 5110 2014 10.1021/nl501839q Single-walled carbon nanotubes alleviate autophagic/lysosomal defects in primary glia from a mouse model of Alzheimer's disease 

  76. J. Mater. Chem. B Zhou 6 8127 2018 10.1039/C8TB02390E Gold nanoparticles impair autophagy flux through shape-dependent endocytosis and lysosomal dysfunction 

  77. J. Hazard Mater. Yu 270 176 2014 10.1016/j.jhazmat.2014.01.028 Silica nanoparticles induce autophagy and autophagic cell death in HepG2 cells triggered by reactive oxygen species 

  78. Int. J. Nanomed. Duan 9 5131 2014 10.2147/IJN.S71074 Silica nanoparticles induce autophagy and endothelial dysfunction via the PI3K/Akt/mTOR signaling pathway 

  79. Int. J. Nanomed. Wang 12 809 2017 10.2147/IJN.S123596 Silica nanoparticles induce autophagy dysfunction via lysosomal impairment and inhibition of autophagosome degradation in hepatocytes 

  80. RSC Adv. Zhang 8 4130 2018 10.1039/C7RA11400A Palladium nanoparticles induces autophagy and autophagic flux blockade in HeLa cells 

  81. J. Cell Biol. Trudeau 214 25 2016 10.1083/jcb.201511042 Lysosome acidification by photoactivated nanoparticles restores autophagy under lipotoxicity 

  82. Nano Lett. Ding 17 6790 2017 10.1021/acs.nanolett.7b03021 Intracellular fate of nanoparticles with polydopamine surface engineering and a novel strategy for exocytosis-inhibiting, lysosome impairment-based cancer therapy 

  83. ACS Nano Zhu 12 2922 2018 10.1021/acsnano.8b00516 Intracellular mechanistic understanding of 2D MoS2 nanosheets for anti-exocytosis-enhanced synergistic cancer therapy 

  84. Adv. Mater. Tao 29 1603276 2017 10.1002/adma.201603276 Black phosphorus nanosheets as a robust delivery platform for cancer theranostics 

  85. Adv. Mater. Tao 30 1802061 2018 10.1002/adma.201802061 Two­dimensional antimonene­based photonic nanomedicine for cancer theranostics 

  86. Drug Deliv. Li 24 45 2017 10.1080/10717544.2017.1391889 Transporting carriers for intracellular targeting delivery via non-endocytic uptake pathways 

  87. J. Am. Chem. Soc. Herce 136 17459 2014 10.1021/ja507790z Fundamental molecular mechanism for the cellular uptake of guanidinium-rich molecules 

  88. Accounts Chem. Res. Walrant 50 2968 2017 10.1021/acs.accounts.7b00455 Membrane crossing and membranotropic activity of cell-penetrating peptides: dangerous liaisons? 

  89. Bioconjug. Chem. Wei 20 1752 2009 10.1021/bc8003777 Surface coating directed cellular delivery of TAT-functionalized quantum dots 

  90. J. Med. Chem. Montet 49 6087 2006 10.1021/jm060515m Multivalent effects of RGD peptides obtained by nanoparticle display 

  91. J. Am. Chem. Soc. Rothbard 126 9506 2004 10.1021/ja0482536 Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells 

  92. ASC Nano Lin 7 10799 2013 10.1021/nn4040553 Cell membranes open “Doors” for cationic nanoparticles/biomolecules: insights into uptake kinetics 

  93. Sci. Rep-UK Bossi 6 22254 2016 10.1038/srep22254 Cobalt oxide nanoparticles can enter inside the cells by crossing plasma membranes 

  94. J. Am. Chem. Sci. Derivery 139 10172 2017 10.1021/jacs.7b02952 Efficient delivery of quantum dots into the cytosol of cells using cell-penetrating poly(disulfide)s 

  95. ACS Appl. Bio Mater. Ghosh 2 339 2019 10.1021/acsabm.8b00617 Arginine-Terminated, chemically designed nanoparticle for direct cell translocation 

  96. Angew. Chem. Jiang 127 516 2015 10.1002/ange.201409161 Direct cytosolic delivery of siRNA using nanoparticle-stabilized nanocapsules 

LOADING...

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로