$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Formation of Friedel’s salt using steel slag and potash mine brine water

Construction & building materials, v.220, 2019년, pp.119 - 127  

Wang, Xue (Corresponding author.) ,  Ni, Wen ,  Jin, Rongzhen ,  Liu, Bing

Abstract AI-Helper 아이콘AI-Helper

Abstract The increasing depth and widening scale of potash mines are suggestive of the use of mortars with greater homogeneity and fluidity properties for mine backfills. Results of the experimental investigations discussed herein indicated that the flow property and the later strength of mortars c...

주제어

참고문헌 (51)

  1. Can. J. Civil. Eng. Tallin 17 4 528 1990 10.1139/l90-061 Waste management schemes of potash mines in Saskatchewan 

  2. K.W. Reid, M.N. Getzlaf, Decommissioning planning for Saskatchewan's potash mines. 2004. 

  3. Sci. Total Environ. Gibb 593-594 99 2017 10.1016/j.scitotenv.2017.03.139 Synergistic desalination of potash brine-impacted groundwater using a dual adsorbent 

  4. Cem. Concr. Res. Fall 35 2 301 2005 10.1016/j.cemconres.2004.05.020 Modeling the effect of sulphate on strength development of paste backfill and bindermixture optimization 

  5. Cem. Concr. Compos. Fall 32 819 2010 10.1016/j.cemconcomp.2010.08.002 Coupled effects of sulphate and temperature on the strength development of cemented tailings backfills: Portland cement-paste backfill 

  6. Eng. Geol. Ghirian 164 195 2013 10.1016/j.enggeo.2013.01.015 Coupled thermo-hydro-mechanical-chemical behaviour of cemented paste backfill in column experiments. Part I: physical, hydraulic and thermal processes and characteristics 

  7. J. Environ. Manag. Tariq 131 138 2013 10.1016/j.jenvman.2013.09.039 A review of binders used in cemented paste tailings for underground and surface disposal practices 

  8. Miner. Eng. Benzaazoua 17 2 141 2004 10.1016/j.mineng.2003.10.022 A contribution to understanding the hardening process of cemented paste fill 

  9. Eng. Geol. Fall 114 397 2010 10.1016/j.enggeo.2010.05.016 A contribution to understanding the effects of curing temperature on the mechanical properties of mine cemented tailings backfill 

  10. Cem. Concr. Compos. Pokharel 38 21 2013 10.1016/j.cemconcomp.2013.03.015 Combined influence of sulphate and temperature on the saturated hydraulic conductivity of hardened cemented paste backfill 

  11. Grice 351 2001 Proceeding of the 7th international Symposium on Mining with Backfill (MINEFILL) Recent mine developments in Australia 

  12. Trans. Tech. Publ. Faitli 244 130 2016 Development of fly-ash based hydraulic backfilling technology for the final closure of underground mines/solid state phenomena 

  13. Miner. Eng. Cihangir 83 117 2015 10.1016/j.mineng.2015.08.022 Paste backfill of high-sulphide mill tailings using alkali-activated blast furnace slag: effect of activator nature, concentration and slag properties 

  14. Constr. Build. Mater. Zhao 113 835 2016 10.1016/j.conbuildmat.2016.03.102 Self-cementitious property of steel slag powder blended with gypsum 

  15. Miner. Eng. Fall 22 1307 2009 10.1016/j.mineng.2009.08.002 Saturated hydraulic conductivity of cemented paste backfill 

  16. Int. J. Miner. Process. Jiang 160 68 2017 10.1016/j.minpro.2017.01.010 Yield stress and strength of saline cemented tailings in sub-zero environments: Portland cement paste backfill 

  17. Metal Mine. Wu 2016 Status and prospects of the paste backfill technology 

  18. Chemosphere Zhang 223 117 2019 10.1016/j.chemosphere.2019.02.030 Immobilisation of high-arsenic-containing tailings by using metallurgical slag-cementing materials 

  19. H. Guo, Manufacture of underground potash salt from backfill mined-out area, involves decomposing potash mining ore, processing to form potassium chloride graded tailing, mixing tailing with brine and binder, and condensing filling material, CN104131836-A. 

  20. China Mine Eng. Li 39 5 23 2010 Backfill test study on oxy-chloride magnesium cement and potash tailings 

  21. Yunnan Chem. Technol. Xu 40 6 41 2013 Study on the tailings backfill technology of potash mine in Laos 

  22. Cem. Concr. Compos. Mardani-Aghabaglou 68 15 2016 10.1016/j.cemconcomp.2016.02.007 Effect of gypsum type on properties of cementitious materials containing high range water reducing admixture 

  23. J. Tang, C. Sun, X. Zheng, Preparation of potassium magnesium potash mine tailings backfill mined-out area involves filling backfill mined-out area with filler consisting of brine-water chlorine magnesium stone slurry, curing agent, and sodium chloride salt, CN104712359. 

  24. J. Mater. Civ. Eng. Shi 16 3 230 2004 10.1061/(ASCE)0899-1561(2004)16:3(230) Steel slag-its production, processing, characteristics, and cementitious properties 

  25. Constr. Build. Mater. Wang 47 1414 2013 10.1016/j.conbuildmat.2013.06.044 Influence of steel slag on mechanical properties and durability of concrete 

  26. Metal Mine Cui 9 177 2014 Effect of steel slag powder addition on properties of high strength tailings concrete 

  27. Fly Ash Comprehensive Util. Shi 1 48 2011 Research advance on activation and mechanism of steel slag activity 

  28. Cem. Concr. Res. Rapin 32 513 2002 10.1016/S0008-8846(01)00716-5 Structural transition of Friedel’s salt 3CaO·Al2O3·CaCl2·10H2O studied by synchrotron powder diffraction 

  29. Constr. Build. Mater. Shao 48 942 2013 10.1016/j.conbuildmat.2013.07.098 Identification of chromate binding mechanisms in Friedel’s salt 

  30. Constr. Build. Mater. Qiao 171 120 2018 10.1016/j.conbuildmat.2018.03.123 Damage in cement pastes exposed to NaCl solutions 

  31. Constr. Build. Mater. Farnam 93 384 2015 10.1016/j.conbuildmat.2015.06.004 Development in cementitious materials exposed to magnesium chloride deicing salt 

  32. Constr. Build. Mater. Talero 33 164 2012 10.1016/j.conbuildmat.2011.12.040 Synergic effect of Friedel’s salt from pozzolan and from OPC co-precipitating in a chloride solution 

  33. Cem. Concr. Compos. Qiao 97 43 2019 10.1016/j.cemconcomp.2018.12.011 Chloride binding of cement pastes with fly ash exposed to CaCl2 solutions at 5 and 23 °C 

  34. Chem. Eng. J. Li 323 304 2017 10.1016/j.cej.2017.04.073 Synthesis and application of Friedel’s salt in arsenic removal from caustic solution 

  35. J. Hazard. Mater. Dai 170 1086 2009 10.1016/j.jhazmat.2009.05.070 Effective removal and fixation of Cr(VI) from aqueous solution with Friedel’s salt 

  36. Constr. Build. Mater. Kong 189 1093 2018 10.1016/j.conbuildmat.2018.09.088 Microwave pre-curing of Portland cement-steel slag powder composite for its hydration properties 

  37. Cem. Concr. Res. Bothe 34 6 1057 2004 10.1016/j.cemconres.2003.11.016 modeling of Friedel’s salt equilibria at 23 °C ± 1 °C 

  38. J. Hazard. Mater. Wang 186 1070 2011 10.1016/j.jhazmat.2010.11.109 A discussion on improving hydration activity of steel slag by altering its mineral compositions 

  39. Chem. Eng. J. Guo 231 121 2013 10.1016/j.cej.2013.07.025 Removal of fluoride and arsenate from aqueous solution by Friedel’s salt via precipitation and anion exchange 

  40. Constr. Build. Mater. Wang 113 815 2016 10.1016/j.conbuildmat.2016.03.122 The properties and mechanism of microbial mineralized steel slag bricks 

  41. J. Phys. Chem. Solids Segni 67 21 1037 2006 10.1016/j.jpcs.2006.01.081 Friedel’s salt-type materials: 1. Interest in hazardous waste immobilization 

  42. J. Chim. Phys. Phys.-Chim. Biol. Houri 96 96 455 1999 10.1051/jcp:1999152 Removal of chromate ions from water by Anionicc CLAYS 

  43. Cem. Concr. Res. Suryavanshi 26 5 717 1996 10.1016/S0008-8846(96)85009-5 Mechanism of Friedel’s salt formation in cements rich in tri-calcium aluminate 

  44. Chem. Mater. Vieille 15 23 4361 2003 10.1021/cm031069j Friedel’s salt and its polymer derivatives. 1. Reversible thermal behavior of Friedel’s salt: a direct observation by means of high-temperature in situ powder X-ray diffraction 

  45. Cem. Concr. Res. Birnin-Yauri 28 12 1713 1998 10.1016/S0008-8846(98)00162-8 Friedel’s salt, Ca2Al(OH)6(Cl,OH)·2H2O: its solid solutions and their role in chloride binding 

  46. J. Wuhan Univ. Technol. (Materials Science Edition) Qin 1 127 2009 10.1007/s11595-009-1127-3 Flame-retardant mechanism of magnesium oxychloride in epoxy resin 

  47. Cem. Concr. Res. Pane 35 1155 2005 10.1016/j.cemconres.2004.10.027 Investigation of blended cement hydration by isothermal calorimetry and thermal analysis 

  48. J. Wuhan Univ. Technol. Mater. Sci. Wang 29 4 789 2014 10.1007/s11595-014-0998-0 Synthesis of calcium silicate hydrate based on steel slag with various alkalinitie 

  49. Cem. Concr. Res. Black 6 1023 2006 10.1016/j.cemconres.2006.03.018 X-ray photoelectron spectroscopic investigation of nanocrystalline calcium silicate hydrates synthesised by reactive milling 

  50. J. Phys. Chem. C Vieira 113 30 13358 2009 10.1021/jp902566r Raman scattering and Fourier transform infrared spectroscopy of Me6Al2(OH)16Cl2·4H2O (Me = Mg, Ni, Zn, Co, and Mn) and Ca2Al(OH)6Cl·2H2O Friedel’s salts 

  51. Bensted 1977 World Cement Technology 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로