$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Effects of sodium/calcium cation exchange on the mechanical properties of calcium silicate hydrate (C-S-H) 원문보기

Construction & building materials, v.243, 2020년, pp.118283 -   

Yaphary, Yohannes Lim (Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University) ,  Lau, Denvid (Department of Architecture and Civil Engineering, City University of Hong Kong) ,  Sanchez, Florence (Department of Civil and Environmental Engineering, Vanderbilt University) ,  Poon, Chi Sun (Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University)

Abstract AI-Helper 아이콘AI-Helper

Abstract Calcium silicate hydrate layer (C-S-Hlayer) is considered to be the fundamental building block of hydrated cement. The effect of sodium ions on the atomic scale mechanical properties of C-S-Hlayer remains, however, unclear. Yet, this information is critical for understanding and predicting...

주제어

참고문헌 (58)

  1. Cem. Concr. Res. Kumar 42 11 1513 2012 10.1016/j.cemconres.2012.07.003 The influence of sodium and potassium hydroxide on alite hydration: experiments and simulations 

  2. Cem. Concr. Res. Juenger 32 2 289 2002 10.1016/S0008-8846(01)00673-1 Examining the relationship between the microstructure of calcium silicate hydrate and drying shrinkage of cement pastes 

  3. J. Am. Ceram. Soc. Macphee 72 4 646 1989 10.1111/j.1151-2916.1989.tb06189.x Solubility and aging of calcium silicate hydrates in alkaline solutions at 25 C 

  4. Cem. Concr. Res. Jawed 8 1 37 1978 10.1016/0008-8846(78)90056-X Alkalies in cement: a review: II. Effects of alkalies on hydration and performance of Portland cement 

  5. Cem. Concr. Res. Mota 108 172 2018 10.1016/j.cemconres.2018.03.017 Impact of NaOH and Na 2 SO 4 on the kinetics and microstructural development of white cement hydration 

  6. Cem. Concr. Res. Mota 122 59 2019 10.1016/j.cemconres.2019.04.008 Impact of sodium gluconate on white cement-slag systems with Na2SO4 

  7. Cem. Concr. Res. Mota 75 53 2015 10.1016/j.cemconres.2015.04.015 The influence of sodium salts and gypsum on alite hydration 

  8. Sci. Rep. Cuesta 8 1 8544 2018 10.1038/s41598-018-26943-y Multiscale understanding of tricalcium silicate hydration reactions 

  9. Cem. Concr. Res. Jennings 38 3 275 2008 10.1016/j.cemconres.2007.10.006 Refinements to colloid model of CSH in cement: CM-II 

  10. Cem. Concr. Res. Jennings 30 1 101 2000 10.1016/S0008-8846(99)00209-4 A model for the microstructure of calcium silicate hydrate in cement paste 

  11. J. Am. Ceram. Soc. Sanchez-Herrero 100 7 3188 2017 10.1111/jace.14855 C3S and C2S hydration in the presence of Na2CO3 and Na2SO4 

  12. Cem. Concr. Res. Sugiyama 38 11 1270 2008 10.1016/j.cemconres.2008.06.002 Chemical alteration of calcium silicate hydrate (C-S-H) in sodium chloride solution 

  13. J. Am. Ceram. Soc. Sanchez-Herrero 99 2 604 2016 10.1111/jace.13985 Alkaline hydration of C2S and C3S 

  14. Proc. Natl. Acad. Sci. Zhou 116 22 10652 2019 10.1073/pnas.1901160116 Multiscale poromechanics of wet cement paste 

  15. Constr. Build. Mater. Zha 190 308 2018 10.1016/j.conbuildmat.2018.09.115 Effect of ion chelating agent on self-healing performance of cement-based materials 

  16. Mater. Struct. Li 49 5 1591 2016 10.1617/s11527-015-0597-3 Comparative investigation on nanomechanical properties of hardened cement paste 

  17. Cem. Concr. Compos. Ashraf 72 284 2016 10.1016/j.cemconcomp.2016.05.023 Multiscale characterization of carbonated wollastonite paste and application of homogenization schemes to predict its effective elastic modulus 

  18. Mater. Chem. Phys. Hou 146 3 503 2014 10.1016/j.matchemphys.2014.04.001 Mechanical properties of calcium silicate hydrate (C-S-H) at nano-scale: a molecular dynamics study 

  19. Constr. Build. Mater. Sanchez 24 11 2060 2010 10.1016/j.conbuildmat.2010.03.014 Nanotechnology in concrete-a review 

  20. 10.1002/adts.201900047 X.Q. Wang, C.L. Chow, D. Lau, A review on modeling techniques of cementitious materials under different length scales: development and future prospects, Adv. Theory Simul. 1900047. 

  21. Compos. B Eng. Lau 143 282 2018 10.1016/j.compositesb.2018.01.014 Nano-engineering of construction materials using molecular dynamics simulations: prospects and challenges 

  22. J. Am. Ceram. Soc. Biernacki 100 7 2746 2017 10.1111/jace.14948 Cements in the 21st century: challenges, perspectives, and opportunities 

  23. J. Mech. Phys. Solids Liu 122 555 2019 10.1016/j.jmps.2018.10.003 Effects of polydispersity and disorder on the mechanical properties of hydrated silicate gels 

  24. Compos. B Eng. Fu 151 127 2018 10.1016/j.compositesb.2018.05.043 Comparison of mechanical properties of CSH and portlandite between nano-indentation experiments and a modeling approach using various simulation techniques 

  25. J. Chem. Phys. Dufresne 149 7 2018 10.1063/1.5042755 Atomistic and mesoscale simulation of sodium and potassium adsorption in cement paste 

  26. Proc. Natl. Acad. Sci. Pellenq 106 38 16102 2009 10.1073/pnas.0902180106 A realistic molecular model of cement hydrates 

  27. Adv. Cem. Based Mater. Cong 3 3-4 144 1996 10.1016/S1065-7355(96)90046-2 29Si MAS NMR study of the structure of calcium silicate hydrate 

  28. J. Chem. Phys. Ayuela 127 16 2007 10.1063/1.2796171 Silicate chain formation in the nanostructure of cement-based materials 

  29. Nat. Mater. Allen 6 4 311 2007 10.1038/nmat1871 Composition and density of nanoscale calcium-silicate-hydrate in cement 

  30. PCCP Shahsavari 13 3 1002 2011 10.1039/C0CP00516A Empirical force fields for complex hydrated calcio-silicate layered materials 

  31. J. Phys. Chem. B Cygan 108 4 1255 2004 10.1021/jp0363287 Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field 

  32. Phys. Rev. Appl. Qomi 3 6 2015 Physical origins of thermal properties of cement paste 

  33. J. Chem. Phys. Qomi 140 5 2014 10.1063/1.4864118 Anomalous composition-dependent dynamics of nanoconfined water in the interlayer of disordered calcium-silicates 

  34. J. Chem. Phys. Bauchy 140 21 2014 10.1063/1.4878656 Order and disorder in calcium-silicate-hydrate 

  35. Nat. Commun. Qomi 5 4960 2014 10.1038/ncomms5960 Combinatorial molecular optimization of cement hydrates 

  36. J. Comput. Phys. Plimpton 117 1 1 1995 10.1006/jcph.1995.1039 Fast parallel algorithms for short-range molecular dynamics 

  37. Phys. Rev. A Hoover 34 3 2499 1986 10.1103/PhysRevA.34.2499 Constant-pressure equations of motion 

  38. Phys. Rev. A Hoover 31 3 1695 1985 10.1103/PhysRevA.31.1695 Canonical dynamics: equilibrium phase-space distributions 

  39. J. Chem. Phys. Evans 83 8 4069 1985 10.1063/1.449071 The nose-hoover thermostat 

  40. Mol. Simul. Kolafa 9 5 351 1992 10.1080/08927029208049126 Cutoff errors in the Ewald summation formulae for point charge systems 

  41. Acta Mater. Hou 67 81 2014 10.1016/j.actamat.2013.12.016 Calcium silicate hydrate from dry to saturated state: structure, dynamics and mechanical properties 

  42. Carbon Al-Muhit 146 680 2019 10.1016/j.carbon.2019.02.019 Tunable mechanical properties of graphene by clustered line pattern hydroxyl functionalization via molecular dynamics simulations 

  43. J. Chem. Phys. Thompson 131 15 2009 10.1063/1.3245303 General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions 

  44. Phys. Rev. E Rycroft 74 2 2006 10.1103/PhysRevE.74.021306 Analysis of granular flow in a pebble-bed nuclear reactor 

  45. Phys. Rev. B Heyes 49 2 755 1994 10.1103/PhysRevB.49.755 Pressure tensor of partial-charge and point-dipole lattices with bulk and surface geometries 

  46. J. Mater. Sci. Drame 42 16 6837 2007 10.1007/s10853-006-1328-5 A comparative study of the volume stability of C-S-H (I) and Portland cement paste in aqueous salt solutions 

  47. J. Chem. Phys. White 113 11 4668 2000 10.1063/1.1288688 The solvation of Na+ in water: First-principles simulations 

  48. Sci. Rep. Yu 6 36967 2016 10.1038/srep36967 Mesoscopic packing of disk-like building blocks in calcium silicate hydrate 

  49. Cem. Concr. Res. Mendoza 74 88 2015 10.1016/j.cemconres.2015.04.006 Structural and nano-mechanical properties of Calcium Silicate Hydrate (CSH) formed from alite hydration in the presence of sodium and potassium hydroxide 

  50. Constr. Build. Mater. Wang 191 891 2018 10.1016/j.conbuildmat.2018.10.010 Multiscale investigations on hydration mechanisms in seawater OPC paste 

  51. Mater. Des. Brown 142 308 2018 10.1016/j.matdes.2018.01.030 Use of nanoindentation phase characterization and homogenization to estimate the elastic modulus of heterogeneously decalcified cement pastes 

  52. Constr. Build. Mater. Hou 189 265 2018 10.1016/j.conbuildmat.2018.08.215 Nano-scale mechanical properties investigation of CSH from hydrated tri-calcium silicate by nano-indentation and molecular dynamics simulation 

  53. Constr. Build. Mater. Fan 176 573 2018 10.1016/j.conbuildmat.2018.05.085 Mechanical properties of CSH globules and interfaces by molecular dynamics simulation 

  54. Compos. Struct. Zhou 216 12 2019 10.1016/j.compstruct.2019.02.058 Structural performance of FRP confined seawater concrete columns under chloride environment 

  55. Compos. B Eng. Yaphary 131 165 2017 10.1016/j.compositesb.2017.07.038 Molecular dynamics simulations on adhesion of epoxy-silica interface in salt environment 

  56. J. Am. Chem. Soc. Katz 118 24 5752 1996 10.1021/ja953943i Calcium ion coordination: a comparison with that of beryllium, magnesium, and zinc 

  57. J. Chem. Phys. Weerasinghe 119 21 11342 2003 10.1063/1.1622372 A Kirkwood-Buff derived force field for sodium chloride in water 

  58. J.N. Israelachvili, Intermolecular and Surface Forces, Academic Press, 2011. 

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로