$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Mycosynthesis, characterization, anticancer and antibacterial activity of silver nanoparticles from endophytic fungus Talaromyces purpureogenus 원문보기

International journal of nanomedicine, v.14, 2019년, pp.3427 - 3438  

Hu, Xiaowen (Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University , Chuncheon 200-701 , South Korea) ,  Saravanakumar, Kandasamy (Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University , Chuncheon 200-701 , South Korea) ,  Jin, Tieyan (Department of Food Science and Engineering, College of Agricultural, Yanbian University , Yanji , Jilin , People’s Republic of China) ,  Wang, Myeong-Hyeon (Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University , Chuncheon 200-701 , South Korea)

Abstract AI-Helper 아이콘AI-Helper

Background: Biogenic silver nanoparticles (AgNPs) have wider range of biomedical applications. The present work synthesized Tp-AgNPs using mycelial extract of endophytic fungus Talaromyces purpureogenus (MEEF), characterized, and analyzed for antibacterial, anti-proliferation and cell wounding heali...

주제어

참고문헌 (68)

  1. 1. Thakkar KN , Mhatre SS , Parikh RY . Biological synthesis of metallic nanoparticles . Nanomedicine . 2017 ; 6 : 257 – 262 . doi: 10.1016/j.nano.2009.07.002 

  2. 2. Shanmuganathan R , MubarakAli D , Prabakar D , et al. An enhancement of antimicrobial efficacy of biogenic and ceftriaxone-conjugated silver nanoparticles: green approach . Environ Sci Pollution Res . 2018 ; 25 ( 11 ): 10362 – 10370 . doi: 10.1007/s11356-017-9367-9 

  3. 3. Pugazhendhi A , Prabakar D , Jacob JM , Karuppusamy I , Saratale RG . Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria . Microb Pathog . 2018 ; 114 : 41 – 45 . doi: 10.1016/j.micpath.2017.11.013 29146498 

  4. 4. Saravanan M , Barik SK , MubarakAli D , Prakash P , Pugazhendhi A . Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria . Microb Pathog . 2018 ; 116 : 221 – 226 . doi: 10.1016/j.micpath.2018.01.038 29407231 

  5. 5. Singh MR , Black K . Anomalous dipole–dipole interaction in an ensemble of quantum emitters and metallic nanoparticle hybrids . J Phys Chem C . 2018 ; 122 ( 46 ): 26584 – 26591 . doi: 10.1021/acs.jpcc.8b06352 

  6. 6. Singh MR , Chandra Sekhar M , Balakrishnan S , Masood S . Medical applications of hybrids made from quantum emitter and metallic nanoshell . J Appl Phys . 2017 ; 122 ( 3 ): 034306 . doi: 10.1063/1.4994308 

  7. 7. Singh MR , Guo J,J , Cid JM , De Hoyos Martinez JE . Control of fluorescence in quantum emitter and metallic nanoshell hybrids for medical applications . J Appl Phys . 2017 ; 121 ( 9 ): 094303 . doi: 10.1063/1.4977756 

  8. 8. Cox JD , Singh MR , von Bilderling C , Bragas AV . A nonlinear switching mechanism in quantum dot and metallic nanoparticle hybrid systems . Adv Opt Mater . 2013 ; 1 ( 6 ): 460 – 467 . doi: 10.1002/adom.v1.6 

  9. 9. Schindel D , Singh MR . A study of energy absorption rate in a quantum dot and metallic nanosphere hybrid system . J Phy Condens Matter . 2015 ; 27 ( 34 ): 345301 . 

  10. 10. Singh D , Rathod V , Ninganagouda S , Herimath J , Kulkarni P . Biosynthesis of silver nanoparticles by endophytic fungi Pencillium sp. Isolated from Curcuma Longa (turmeric) and its antibacterial activity against pathogenic gram-negative bacteria . J Pharm Res . 2013 ; 7 : 448 – 453 . doi: 10.1016/j.jopr.2013.06.003 

  11. 11. Shah M , Fawcett D , Sharma S , Tripathy SK . G.E.J. Poinern Green synthesis of metallic nanoparticles via biological entities . Materials . 2015 ; 8 : 7278 – 7308 . doi: 10.3390/ma8125486 28793638 

  12. 12. Chernousova S , Epple M . Silver as antibacterial agent: ion, nanoparticle, and metal . Angew Chem Int Ed Engl . 2013 ; 52 : 1636 – 1653 . doi: 10.1002/anie.201205923 23255416 

  13. 13. Zhao XX , Zhou LF , Rajoka MSR , et al. Fungal silver nanoparticle: synthesis, application and challengess . Crit Rev Biotechnol . 2018 ; 38 ( 6 ): 817 – 835 . doi: 10.1080/07388551.2017.1414141 29254388 

  14. 14. Jena P , Mohanty S , Mallick R , Jacob B , Sonawane A . Toxicity and antibacterial assessment of chitosan-coated silver nanoparticles on human pathogens and macrophage cells . Int J Nanomedicine . 2012;7:1805-1818. doi: 10.2147/IJN.S28077.. 

  15. 15. Zhang L , Gu FX , Chan JM , Wang AZ , Langer RS , Farokhzad OC . Nanoparticles in medicine: therapeutic applications and developments . Clin Pharmacol Ther . 2008 ; 83 ( 5 ): 761 – 769 . doi: 10.1038/sj.clpt.6100400 17957183 

  16. 16. Le OB , Stellacci F . Antibacterial activity of silver nanoparticles: a surface science insight . Nano Today . 2015 ; 10 : 339 – 354 . doi: 10.1016/j.nantod.2015.04.002 

  17. 17. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. World cancer statistics . GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68(6):394–424. doi:10.3322/caac.21492 

  18. 18. Giard DJ , Aaronson SA , Todaro GJ , et al. In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors . J Natl Cancer Inst . 1973 ; 51 ( 5 ): 1417 – 1423 . doi: 10.1093/jnci/51.5.1417 4357758 

  19. 19. Pugazhendhi A , Edison TNJI , Karuppusamy I , Kathirvel B . Inorganic nanoparticles: a potential cancer therapy for human welfare . Int J Pharm . 2018 ; 539 ( 1 ): 104 – 111 . doi: 10.1016/j.ijpharm.2018.01.034 29366941 

  20. 20. Coccia M , Wang L . Path-breaking directions of nanotechnology-based chemotherapy and molecular cancer therapy . Technol Forecast Soc Change . 2015 ; 94 : 155 – 169 . doi: 10.1016/j.techfore.2014.09.007 

  21. 21. Estanqueiro M , Amaral MH , Conceicao J , Sousa LJM . Nanotechnological carriers for cancer chemotherapy, The state of the art . Colloids Surf B . 2015 ; 126 : 631 – 648 . doi: 10.1016/j.colsurfb.2014.12.041 

  22. 22. Santoni M , Massari F , Del Re M , et al. Investigational therapies targeting signal transducer and activator of transcription 3 for the treatment of cancer . Expert Opin Invest Drugs . 2015 ; 24 : 809 – 824 . doi: 10.1517/13543784.2015.1020370 

  23. 23. Wang C , Makila EM , Kaasalainen MH , et al. Dual-drug delivery by porous silicon nanoparticles for improved cellular uptake., sustained release., and combination therapy . Acta Biomater . 2015 ; 16 : 206 – 214 . doi: 10.1016/j.actbio.2015.01.021 25637067 

  24. 24. Devanesan S , AlSalhi MS , Vishnubalaji R . Rapid biological synthesis of silver nanoparticles using plant seed extracts and their cytotoxicity on colorectal cancer cell lines . J Clust Sci . 2017 ; 28 : 595 – 605 . doi: 10.1007/s10876-016-1134-4 

  25. 25. Nakkala JR , Mata R , Sadras SR . Green synthesized nano silver: synthesis, physicochemical profiling, antibacterial, anticancer activities and biological in vivo toxicity . J Colloid Interface Sci . 2017 ; 499 : 33 – 45 . doi: 10.1016/j.jcis.2017.03.090 28363102 

  26. 26. Preetha D , Prachi K , Chirom A . Synthesis and characterization of silver nanoparticles using cannonball leaves and their cytotoxic activity against MCF-7 cell line . J Nanotechnol . 2013 ; 2 : 421 – 428 . 

  27. 27. Kulkarni RR , Shaiwale NS , Deobagkar DN . Synthesis and extracellular accumulation of silver nanoparticles by employing radiation-resistant Deinococcus radiodurans, their characterization, and determination of bioactivity . Int J Nanomed . 2015 ; 10 : 963 – 974 . 

  28. 28. Mishra Y , Singh A , Batra A , Sharma MM . Understanding the biodiversity and biological applications of endophytic fungi: a review . J Microb Biochem Technol . 2014 ; S8 : 004 . 

  29. 29. Ma L , Su W , Liu JX , et al. Optimization for extracellular biosynthesis of silver nanoparticles by Penicillium aculeatum Su1 and their antimicrobial activity and cytotoxic effect compared with silver ions . Mater Sci Eng C . 2017 ; 77 : 963 – 971 . doi: 10.1016/j.msec.2017.03.294 

  30. 30. Saravanakumar , K. , Shanmugam S. , Varukattu N.B , et al. Biosynthesis and characterization of copper oxide nanoparticles from indigenous fungi and its effect of photothermolysis on human lung carcinoma . J Photochem Photobiol B . 2019 ; 190 : 103 – 109 . doi: 10.1016/j.jphotobiol.2018.02.005 30508758 

  31. 31. Saravanakumar K , Wang M-H . Trichoderma based synthesis of anti-pathogenic silver nanoparticles and their characterization, antioxidant and cytotoxicity properties . Microb Pathog . 2018 ; 114 : 269 – 273 . doi: 10.1016/j.micpath.2017.12.005 29208539 

  32. 32. Shukla H , Sandhu SS . Mycofabrication and characterization of silver nanoparticles by using some endophytic fungi with special reference to their antimicrobial potential . Int J Nanotechnol Appl . 2017 ; 7 : 7 – 22 . 

  33. 33. Johnson PB , Christy RW . Optical constants of the noble metals . Phys Rev B . 1972 ; 6 ( 12 ): 4370 – 4379 . doi: 10.1103/PhysRevB.6.4370 

  34. 34. Xu J , Han X , Liu H , Hu Y . Synthesis and optical properties of silver nanoparticles stabilized by gemini surfactant . Colloids Surf A . 2006 ; 273 ( 1–3 ): 179 – 183 . doi: 10.1016/j.colsurfa.2005.08.019 

  35. 35. Saravanakumar , K. , Jeevithan E , Chelliah R , et al. Zinc-chitosan nanoparticles induced apoptosis in human acute T-lymphocyte leukemia through activation of tumor necrosis factor receptor CD95 and apoptosis-related genes . Int J Biol Macromol . 2018 ; 119 : 1144 – 1153 . doi: 10.1016/j.ijbiomac.2018.08.017 30092310 

  36. 36. Brumfitt W , Hamilton-Miller JM , Franklin I . Antibiotic activity of natural products: 1 . Propolis Microbios . 1990 ; 62 ( 250 ): 19 – 22 . 2110610 

  37. 37. Ahmad N , Sharma S , Alam MK , et al. Rapid synthesis of silver nanoparticles using dried medicinal plant of basil . Colloids Surf B . 2010 ; 81 ( 1 ): 81 – 86 . doi: 10.1016/j.colsurfb.2010.06.029 

  38. 38. Singh MR , Schindel DG , Hatef A . Dipole-dipole interaction in a quantum dot and metallic nanorod hybrid system . Appl Phys Lett . 2011 ; 99 ( 18 ): 181106 . doi: 10.1063/1.3658395 

  39. 39. Hatef A , Sadeghi SM , Singh MR . Coherent molecular resonances in quantum dot–metallic nanoparticle systems: coherent self-renormalization and structural effects . Nanotechnology . 2012 ; 23 ( 20 ): 205203 . doi: 10.1088/0957-4484/23/20/205203 22543983 

  40. 40. Saravanakumar , K. , Chelliah R , Shanmugam S , et al. Green synthesis and characterization of biologically active nanosilver from seed extract of Gardenia jasminoides Ellis . J Photochem Photobiol B . 2018 ; 185 : 126 – 135 . doi: 10.1016/j.jphotobiol.2018.05.032 29886331 

  41. 41. Deene M , Lingappa K . Microwave assisted rapid and green synthesis of silver nanoparticles using a pigment produced by Streptomyces coelicolor klmp33 . Bioinorg Chem Appl . 2013 ; 2013 : Article 341798 . 24068978 

  42. 42. Pavani KV , Gayathramma K , Aparajitha B , Shah S . Phyto-synthesis of silver nanoparticles using extracts of ipomoea indica flowers . Am J Nanomater . 2013 ; 1 ( 1 ): 2013 . 

  43. 43. Aravinthan A , Govarthanan M , Selvam K , et al. Sunroot mediated synthesis and characterization of silver nanoparticles and evaluation of its antibacterial and rat splenocyte cytotoxic effects . Int J Nanomed . 2015 ; 10 : 1977 – 1983 . doi: 10.2147/IJN.S79106 

  44. 44. Fadel QJ , Al-Mashhedy LAM . Biosynthesis of silver nanoparticles using peel extract of Raphanus sativus L . Biotechnol Ind J . 2017 ; 13 ( 1 ): 120 . 

  45. 45. Carlson , C , Hussain SM , Schrand AMK , et al. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species . J Phy Chem B . 2008 ; 112 ( 43 ): 13608 – 13619 . doi: 10.1021/jp712087m 

  46. 46. Mishra , AR , Zheng J , Tang X , et al. Silver nanoparticle-induced autophagic-lysosomal disruption and NLRP3-Inflammasome Activation in HepG2 cells is size-dependent . Toxicol Sci . 2016 ; 150 ( 2 ): 473 – 487 . doi: 10.1093/toxsci/kfw011 26801583 

  47. 47. Liu , W , Wu Y , Wang C , et al. Impact of silver nanoparticles on human cells: effect of particle size . Nanotoxicology . 2010 ; 4 ( 3 ): 319 – 330 . doi: 10.3109/17435390.2010.483745 20795913 

  48. 48. Akter , M , Sikder MT , Rahman MM , et al. A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives . J Adv Res . 2018 ; 9 : 1 – 16 . doi: 10.1016/j.jare.2017.10.008 30046482 

  49. 49. Ottoni CA , Simoes MF , Fernandes S , et al. Screening of filamentous fungi for antimicrobial silver nanoparticles synthesis . AMB Expr . 2017 ; 7 ( 31 ). doi: 10.1186/s13568-017-0332-2 

  50. 50. Tahira A , Mohd SK , Hemalatha S . A facile and rapid method for green synthesis of Silver Myco nanoparticles using endophytic fungi . Int J Nano Dimension . 2018 ; 9 ( 4 ): 435 – 441 . 

  51. 51. Mohamed MA , HUSSEIN HM ALIAAM . Antifungal activity of different size controlled stable silver nanoparticles biosynthesized by the endophytic fungus Aspergillus terreus . J Phytopathology Pest Manag . 2018 ; 5 ( 2 ): 88 – 107 . 

  52. 52. Prabu KS , Rajkuberan C , Sathishkumar G , et al. Antimicrobial and larvicidal activity of eco-friendly silver nanoparticles synthesized from endophytic fungi Phomopsis liquidambaris . Biocata Agricl Biotechnol . 2018 ; 16 : 22 – 30 . doi: 10.1016/j.bcab.2018.07.006 

  53. 53. Mohammad F , Saeed F . Biosynthesis of antibacterial silver nanoparticles by endophytic fungus Nemania sp. Isolated From Taxus baccata L.(Iranian Yew) . Zahedan J Res Med Sci . 2018 ; 20 ( 6 ): e57916 . 

  54. 54. Sahadevan N , Sebastian JM , Sunil MA , Soman S , Radhakrishnan EK , Mathew J . Efficient visible light induced synthesis of silver nanoparticles by Penicillium polonicum ARA 10 isolated from Chetomorpha antennina and its antibacterial efficacy against Salmonella enterica serova Typhimurium . J Photochem Photobiol B . 2018 ; 180 : 175 – 185 . doi: 10.1016/j.jphotobiol.2018.02.005 29453129 

  55. 55. Balakumaran MD , Ramachandran R , Kalaichelvan PT . Exploitation of endophytic fungus, Guignardia mangiferae for extracellular synthesis of silver nanoparticles and their in vitro biological activities . Microbiol Res . 2015 ; 178 : 9 – 17 . doi: 10.1016/j.micres.2015.05.009 26302842 

  56. 56. Hemashekhar B , Chandrappa CP , Govindappa M , Chandrasekhar N , Nagaraju G , Ramachandra YL . Green synthesis of silver nanoparticles from Endophytic fungus Aspergillus niger isolated from Simarouba glauca leaf and its Antibacterial and Antioxidant activity . Inter J Eng Res Appl. 2017 ; 7 ( 8 ): 17 – 24 . 

  57. 57. Reena R , Dushyant S , Monika C , Yadav JP . Green synthesis, characterization and antibacterial activity of silver nanoparticles of endophytic fungi Aspergillus terreus . J Nanomed Nanotechnol . 2017 ; 8 : 4 . 

  58. 58. Shaheen TI , Abeer AAEA . In-situ green myco-synthesis of silver nanoparticles onto cotton fabrics for broad spectrum antimicrobial activity . Int J Biol Macromol . 2018 ; 118 : 2121 – 2130 . doi: 10.1016/j.ijbiomac.2018.07.062 30012491 

  59. 59. Singh DK , Kumar J , Sharma VK , et al. Mycosynthesis of bactericidal silver and polymorphic gold nanoparticles–physicochemical variation effects and mechanism . Nanomadicine. 2018 ; 13 ( 2 ): 191 – 207 . 

  60. 60. Vivian C , Lisa OGA , Tong KS. Synthesis of silver nanoparticles mediated by endophytic fungi associated with orchids and its antibacterial activity . Materials Today: Proceedings . 2018 ; 5 ( 10 ;Part 2): 22093 – 22100. 

  61. 61. Tej S , Kumari J , Amar P , Ajeet S , Ranchan C , Chandel SS . Biosynthesis, characterization and antibacterial activity of silver nanoparticles using an endophytic fungal supernatant of Raphanus sativus . J Genetic Eng Biotechnol . 2017 ; 15 : 31 – 39 . doi: 10.1016/j.jgeb.2017.04.005 

  62. 62. Govindappa M , Farheen H , Chandrappa CP , Channabasava RVR , Vinay BR . Mycosynthesis of silver nanoparticles using extract of endophytic fungi, Penicillium species of Glycosmis mauritiana, and its antioxidant, antimicrobial, anti-inflammatory and tyrokinase inhibitory activity . Adv Nat Sci . 2016 ; 7 ( 3 ): Article035014 . 

  63. 63. Vardhana J , Kathiravan G . Biosynthesis of silver nanoparticles by endophytic fungi Pestaloptiopsis pauciseta isolated from the leaves of Psidium guajava linn . Int J Pharm Sci Rev Res . 2015 ; 31 ( 1 ): 29 – 31 . 

  64. 64. Parthasarathy R , Sathiyabama M , Prabha T . Biosynthesis of silver nanoparticles using an endophytic fungus, Curvularia lunata and its antimicrobial potential . J Nanosci Nanoeng . 2015 ; 1 ( 4 ): 241 – 247 . 

  65. 65. Vasudeva RN , Pushpalatha B , Sukhendu BG , Vijaya T . Endophytic fungal assisted synthesis of silver nanoparticles, characterization, and antimicrobial activity . Asian J Pharm Clinl Res . 2015 ; 8 ( 3 ): 113 – 116 . 

  66. 66. Lamabam SD , Joshi SR . Ultrastructures of silver nanoparticles biosynthesized using endophytic fungi . J Microsc Ultrastruct . 2015 ; 3 : 29 – 37 . doi: 10.1016/j.jmau.2014.10.004 30023179 

  67. 67. Dattu S , Vandana R , Shivaraj N , Jyothi H , Ashish KS , Jasmine M . Optimization and characterization of silver nanoparticle by endophytic fungi Penicillium sp. Isolated from Curcuma longa (Turmeric) and application studies against MDR E. coli and S. aureus . Bioinorg Chem Appl . 2014 ; 2014 : Article 40S021 . 

  68. 68. Rodrigues AG , Ping LY , Marcato PD , et al. Biogenic antimicrobial silver nanoparticles produced by fungi . Appl Microbiol Biotechnol . 2013 ; 97 : 775 – 782 . doi: 10.1007/s00253-012-4209-7 22707055 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로