$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Transparent, Flexible Heater Based on Hybrid 2D Platform of Graphene and Dry-Spun Carbon Nanotubes

ACS applied materials & interfaces, v.11 no.17, 2019년, pp.16223 - 16232  

Li, Luhe ,  Hong, Soon Kyu ,  Jo, Yeongsu ,  Tian, Mengdi ,  Woo, Chae Young ,  Kim, Soo Hyung ,  Kim, Jong-Man ,  Lee, Hyung Woo

Abstract AI-Helper 아이콘AI-Helper

A high-performance, flexible, and transparent heater based on a hybrid of dry-spun carbon nanotubes (CNT), which is pulled out directly from a super vertically aligned CNT forest, and graphene is fabricated. The electrical, optical, and electromechanical properties of two different kinds of hybrid d...

주제어

참고문헌 (53)

  1. Im, K., Cho, K., Kim, J., Kim, S.. Transparent heaters based on solution-processed indium tin oxide nanoparticles. Thin solid films, vol.518, no.14, 3960-3963.

  2. Ederth, J., Johnsson, P., Niklasson, G. A., Hoel, A., Hultåker, A., Heszler, P., Granqvist, C. G., van Doorn, A. R., Jongerius, M. J., Burgard, D.. Electrical and optical properties of thin films consisting of tin-doped indium oxide nanoparticles. Physical review. B, Condensed matter and materials physics, vol.68, no.15, 155410-.

  3. Zhu, Yumin, Otley, Michael T., Zhang, Xiaozheng, Li, Mengfang, Asemota, Chris, Li, Geng, Invernale, Michael A., Sotzing, Gregory A.. Polyelectrolytes exceeding ITO flexibility in electrochromic devices. Journal of materials chemistry. C, Materials for optical and electronic devices, vol.2, no.46, 9874-9881.

  4. Kumar, Akshay, Zhou, Chongwu. The Race To Replace Tin-Doped Indium Oxide: Which Material Will Win?. ACS nano, vol.4, no.1, 11-14.

  5. Choi, K.H., Kim, J., Noh, Y.J., Na, S.I., Kim, H.K.. Ag nanowire-embedded ITO films as a near-infrared transparent and flexible anode for flexible organic solar cells. Solar energy materials and solar cells : an international journal devoted to photovoltaic, photothermal, and photochemical solar energy conversion, vol.110, 147-153.

  6. Chen, Zhong, Cotterell, Brian, Wang, Wei. The fracture of brittle thin films on compliant substrates in flexible displays. Engineering fracture mechanics, vol.69, no.5, 597-603.

  7. Na, Seok-In, Kim, Seok-Soon, Jo, Jang, Kim, Dong-Yu. Efficient and Flexible ITO-Free Organic Solar Cells Using Highly Conductive Polymer Anodes. Advanced materials, vol.20, no.21, 4061-4067.

  8. Langley, Daniel, Giusti, Gaël, Mayousse, Céline, Celle, Caroline, Bellet, Daniel, Simonato, Jean-Pierre. Flexible transparent conductive materials based on silver nanowire networks: a review. Nanotechnology, vol.24, no.45, 452001-.

  9. Kim, D., Zhu, L., Jeong, D.J., Chun, K., Bang, Y.Y., Kim, S.R., Kim, J.H., Oh, S.K.. Transparent flexible heater based on hybrid of carbon nanotubes and silver nanowires. Carbon, vol.63, 530-536.

  10. Choi, Suji, Park, Jinkyung, Hyun, Wonji, Kim, Jangwon, Kim, Jaemin, Lee, Young Bum, Song, Changyeong, Hwang, Hye Jin, Kim, Ji Hoon, Hyeon, Taeghwan, Kim, Dae-Hyeong. Stretchable Heater Using Ligand-Exchanged Silver Nanowire Nanocomposite for Wearable Articular Thermotherapy. ACS nano, vol.9, no.6, 6626-6633.

  11. Ding, Su, Jiu, Jinting, Gao, Yue, Tian, Yanhong, Araki, Teppei, Sugahara, Tohru, Nagao, Shijo, Nogi, Masaya, Koga, Hirotaka, Suganuma, Katsuaki, Uchida, Hiroshi. One-Step Fabrication of Stretchable Copper Nanowire Conductors by a Fast Photonic Sintering Technique and Its Application in Wearable Devices. ACS applied materials & interfaces, vol.8, no.9, 6190-6199.

  12. Jang, Jiuk, Hyun, Byung Gwan, Ji, Sangyoon, Cho, Eunjin, An, Byeong Wan, Cheong, Woon Hyung, Park, Jang-Ung. Rapid production of large-area, transparent and stretchable electrodes using metal nanofibers as wirelessly operated wearable heaters. NPG Asia Materials, vol.9, e432-e432.

  13. Shobin, Loukkose Rosemary, Manivannan, Sellaperumal. Enhancement of electrothermal performance in single-walled carbon nanotube transparent heaters by room temperature post treatment. Solar energy materials and solar cells : an international journal devoted to photovoltaic, photothermal, and photochemical solar energy conversion, vol.174, 469-477.

  14. Kang, Tae June, Kim, Taewoo, Seo, Sung Min, Park, Young June, Kim, Yong Hyup. Thickness-dependent thermal resistance of a transparent glass heater with a single-walled carbon nanotube coating. Carbon, vol.49, no.4, 1087-1093.

  15. Kim, Duckjong, Lee, Hyun-Chang, Woo, Ju Yeon, Han, Chang-Soo. Thermal Behavior of Transparent Film Heaters Made of Single-Walled Carbon Nanotubes. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.114, no.13, 5817-5821.

  16. Jung, D., Kim, D., Lee, K.H., Overzet, L.J., Lee, G.S.. Transparent film heaters using multi-walled carbon nanotube sheets. Sensors and actuators. A, Physical, vol.199, 176-180.

  17. Jung, Daewoong, Han, Maeum, Lee, Gil S.. Flexible transparent conductive heater using multiwalled carbon nanotube sheet. Journal of vacuum science and technology. materials, processing, measurement, & phenomena : JVST B. B, Nanotechnology & microelectronics, vol.32, no.4, 04E105-.

  18. Sui, Dong, Huang, Yi, Huang, Lu, Liang, Jiajie, Ma, Yanfeng, Chen, Yongsheng. Flexible and Transparent Electrothermal Film Heaters Based on Graphene Materials. Small, vol.7, no.22, 3186-3192.

  19. Bae, Jung Jun, Lim, Seong Chu, Han, Gang Hee, Jo, Young Woo, Doung, Dinh Loc, Kim, Eun Sung, Chae, Seung Jin, Huy, Ta Quang, Van Luan, Nguyen, Lee, Young Hee. Heat Dissipation of Transparent Graphene Defoggers. Advanced functional materials, vol.22, no.22, 4819-4826.

  20. Lee, J.-Y., Connor, S. T., Cui, Y., Peumans, P.. Solution-Processed Metal Nanowire Mesh Transparent Electrodes. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.8, no.2, 689-692.

  21. Lan, Wei, Chen, Youxin, Yang, Zhiwei, Han, Weihua, Zhou, Jinyuan, Zhang, Yue, Wang, Junya, Tang, Guomei, Wei, Yupeng, Dou, Wei, Su, Qing, Xie, Erqing. Ultraflexible Transparent Film Heater Made of Ag Nanowire/PVA Composite for Rapid-Response Thermotherapy Pads. ACS applied materials & interfaces, vol.9, no.7, 6644-6651.

  22. Kim, Youngmin, Ryu, Tae In, Ok, Ki‐Hoon, Kwak, Min‐Gi, Park, Sungmin, Park, Nam‐Gyu, Han, Chul Jong, Kim, Bong Soo, Ko, Min Jae, Son, Hae Jung, Kim, Jong‐Woong. Inverted Layer‐By‐Layer Fabrication of an Ultraflexible and Transparent Ag Nanowire/Conductive Polymer Composite Electrode for Use in High‐Performance Organic Solar Cells. Advanced functional materials, vol.25, no.29, 4580-4589.

  23. Nam, Sanggil, Song, Myungkwan, Kim, Dong-Ho, Cho, Byungjin, Lee, Hye Moon, Kwon, Jung-Dae, Park, Sung-Gyu, Nam, Kee-Seok, Jeong, Yongsoo, Kwon, Se-Hun, Park, Yun Chang, Jin, Sung-Ho, Kang, Jae-Wook, Jo, Sungjin, Kim, Chang Su. Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode. Scientific reports, vol.4, 4788-.

  24. Allen, Matthew J., Tung, Vincent C., Kaner, Richard B.. Honeycomb Carbon: A Review of Graphene. Chemical reviews, vol.110, no.1, 132-145.

  25. Huang, Pinshane Y., Ruiz-Vargas, Carlos S., van der Zande, Arend M., Whitney, William S., Levendorf, Mark P., Kevek, Joshua W., Garg, Shivank, Alden, Jonathan S., Hustedt, Caleb J., Zhu, Ye, Park, Jiwoong, McEuen, Paul L., Muller, David A.. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature, vol.469, no.7330, 389-392.

  26. Tsen, Adam W., Brown, Lola, Levendorf, Mark P., Ghahari, Fereshte, Huang, Pinshane Y., Havener, Robin W., Ruiz-Vargas, Carlos S., Muller, David A., Kim, Philip, Park, Jiwoong. Tailoring Electrical Transport Across Grain Boundaries in Polycrystalline Graphene. Science, vol.336, no.6085, 1143-1146.

  27. Kholmanov, Iskandar N., Magnuson, Carl W., Aliev, Ali E., Li, Huifeng, Zhang, Bin, Suk, Ji Won, Zhang, Li Li, Peng, Eric, Mousavi, S. Hossein, Khanikaev, Alexander B., Piner, Richard, Shvets, Gennady, Ruoff, Rodney S.. Improved Electrical Conductivity of Graphene Films Integrated with Metal Nanowires. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.12, no.11, 5679-5683.

  28. Kang, Junmo, Jang, Yonghee, Kim, Youngsoo, Cho, Seung-Hyun, Suhr, Jonghwan, Hong, Byung Hee, Choi, Jae-Boong, Byun, Doyoung. An Ag-grid/graphene hybrid structure for large-scale, transparent, flexible heaters. Nanoscale, vol.7, no.15, 6567-6573.

  29. Lee, Mi-Sun, Lee, Kyongsoo, Kim, So-Yun, Lee, Heejoo, Park, Jihun, Choi, Kwang-Hyuk, Kim, Han-Ki, Kim, Dae-Gon, Lee, Dae-Young, Nam, SungWoo, Park, Jang-Ung. High-Performance, Transparent, and Stretchable Electrodes Using Graphene–Metal Nanowire Hybrid Structures. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.13, no.6, 2814-2821.

  30. Zhu, Yu, Sun, Zhengzong, Yan, Zheng, Jin, Zhong, Tour, James M.. Rational Design of Hybrid Graphene Films for High-Performance Transparent Electrodes. ACS nano, vol.5, no.8, 6472-6479.

  31. Li, Zhi, Kang, Junjie, Liu, Zhiqiang, Du, Chengxiao, Lee, Xiao, Li, Xiao, Wang, Liancheng, Yi, Xiaoyan, Zhu, Hongwei, Wang, Guohong. Enhanced performance of GaN-based light-emitting diodes with graphene/Ag nanowires hybrid films. AIP advances, vol.3, no.4, 042134-.

  32. Chen, Tong Lai, Ghosh, Dhriti Sundar, Mkhitaryan, Vahagn, Pruneri, Valerio. Hybrid Transparent Conductive Film on Flexible Glass Formed by Hot-Pressing Graphene on a Silver Nanowire Mesh. ACS applied materials & interfaces, vol.5, no.22, 11756-11761.

  33. Dong, Pei, Zhu, Yu, Zhang, Jing, Peng, Cheng, Yan, Zheng, Li, Lei, Peng, Zhiwei, Ruan, Gedeng, Xiao, Wanyao, Lin, Hong, Tour, James M., Lou, Jun. Graphene on Metal Grids as the Transparent Conductive Material for Dye Sensitized Solar Cell. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.118, no.45, 25863-25868.

  34. Zhang, X., Jiang, K., Feng, C., Liu, P., Zhang, L., Kong, J., Zhang, T., Li, Q., Fan, S.. Spinning and Processing Continuous Yarns from 4-Inch Wafer Scale Super-Aligned Carbon Nanotube Arrays. Advanced materials, vol.18, no.12, 1505-1510.

  35. Jiang, Kaili, Li, Qunqing, Fan, Shoushan. Nanotechnology: Spinning continuous carbon nanotube yarns. Nature, vol.419, no.6909, 801-801.

  36. Ryu, Seongwoo, Lee, Phillip, Chou, Jeffrey B., Xu, Ruize, Zhao, Rong, Hart, Anastasios John, Kim, Sang-Gook. Extremely Elastic Wearable Carbon Nanotube Fiber Strain Sensor for Monitoring of Human Motion. ACS nano, vol.9, no.6, 5929-5936.

  37. Kuznetsov, Alexander A., Fonseca, Alexandre F., Baughman, Ray H., Zakhidov, Anvar A.. Structural Model for Dry-Drawing of Sheets and Yarns from Carbon Nanotube Forests. ACS nano, vol.5, no.2, 985-993.

  38. Maiti, Uday Narayan, Lee, Won Jun, Lee, Ju Min, Oh, Youngtak, Kim, Ju Young, Kim, Ji Eun, Shim, Jongwon, Han, Tae Hee, Kim, Sang Ouk. 25th Anniversary Article: Chemically Modified/Doped Carbon Nanotubes & Graphene for Optimized Nanostructures & Nanodevices. Advanced materials, vol.26, no.1, 40-67.

  39. Lee, Duck Hyun, Lee, Won Jun, Lee, Won Jong, Kim, Sang Ouk, Kim, Yong-Hyun. Theory, Synthesis, and Oxygen Reduction Catalysis of Fe-Porphyrin-Like Carbon Nanotube. Physical review letters, vol.106, no.17, 175502-.

  40. Lee, Duck Hyun, Shin, Dong Ok, Lee, Won Jong, Kim, Sang Ouk. Hierarchically Organized Carbon Nanotube Arrays from Self-Assembled Block Copolymer Nanotemplates. Advanced materials, vol.20, no.13, 2480-2485.

  41. Li, M., Wu, Y., Zhao, F., Wei, Y., Wang, J., Jiang, K., Fan, S.. Cycle and rate performance of chemically modified super-aligned carbon nanotube electrodes for lithium ion batteries. Carbon, vol.69, 444-451.

  42. Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., Kallitsis, I., Galiotis, C.. Chemical oxidation of multiwalled carbon nanotubes. Carbon, vol.46, no.6, 833-840.

  43. Balasubramanian, Kannan, Burghard, Marko. Chemically Functionalized Carbon Nanotubes. Small, vol.1, no.2, 180-192.

  44. Jin, S.H., Park, Y.B., Yoon, K.H.. Rheological and mechanical properties of surface modified multi-walled carbon nanotube-filled PET composite. Composites science and technology, vol.67, no.15, 3434-3441.

  45. Reina, Alfonso, Jia, Xiaoting, Ho, John, Nezich, Daniel, Son, Hyungbin, Bulovic, Vladimir, Dresselhaus, Mildred S., Kong, Jing. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.9, no.1, 30-35.

  46. Dong, X., Wang, P., Fang, W., Su, C.Y., Chen, Y.H., Li, L.J., Huang, W., Chen, P.. Growth of large-sized graphene thin-films by liquid precursor-based chemical vapor deposition under atmospheric pressure. Carbon, vol.49, no.11, 3672-3678.

  47. Cho, Ji Hwan, Kang, Dong Joo, Jang, Nam-Su, Kim, Kang-Hyun, Won, Phillip, Ko, Seung Hwan, Kim, Jong-Man. Metal Nanowire-Coated Metal Woven Mesh for High-Performance Stretchable Transparent Electrodes. ACS applied materials & interfaces, vol.9, no.46, 40905-40913.

  48. Liu, K., Sun, Y., Chen, L., Feng, C., Feng, X., Jiang, K., Zhao, Y., Fan, S.. Controlled Growth of Super-Aligned Carbon Nanotube Arrays for Spinning Continuous Unidirectional Sheets with Tunable Physical Properties. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.8, no.2, 700-705.

  49. Kholmanov, Iskandar N., Magnuson, Carl W., Piner, Richard, Kim, Jin‐Young, Aliev, Ali E., Tan, Cheng, Kim, Tae Young, Zakhidov, Anvar A., Sberveglieri, Giorgio, Baughman, Ray H., Ruoff, Rodney S.. Optical, Electrical, and Electromechanical Properties of Hybrid Graphene/Carbon Nanotube Films. Advanced materials, vol.27, no.19, 3053-3059.

  50. Li, Xuesong, Zhu, Yanwu, Cai, Weiwei, Borysiak, Mark, Han, Boyang, Chen, David, Piner, Richard D., Colombo, Luigi, Ruoff, Rodney S.. Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.9, no.12, 4359-4363.

  51. Bae, Sukang, Kim, Hyeongkeun, Lee, Youngbin, Xu, Xiangfan, Park, Jae-Sung, Zheng, Yi, Balakrishnan, Jayakumar, Lei, Tian, Ri Kim, Hye, Song, Young Il, Kim, Young-Jin, Kim, Kwang S., Özyilmaz, Barbaros, Ahn, Jong-Hyun, Hong, Byung Hee, Iijima, Sumio. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature nanotechnology, vol.5, no.8, 574-578.

  52. Jeong, Changwook, Nair, Pradeep, Khan, Mohammad, Lundstrom, Mark, Alam, Muhammad A.. Prospects for Nanowire-Doped Polycrystalline Graphene Films for Ultratransparent, Highly Conductive Electrodes. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.11, no.11, 5020-5025.

  53. Fukaya, Norihiro, Kim, Dong Young, Kishimoto, Shigeru, Noda, Suguru, Ohno, Yutaka. One-Step Sub-10 μm Patterning of Carbon-Nanotube Thin Films for Transparent Conductor Applications. ACS nano, vol.8, no.4, 3285-3293.

LOADING...

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로