$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Numerical study on thermal performances of 2.0 kW burner for the cabin heater of an electric passenger vehicle

Applied thermal engineering, v.138, 2018년, pp.819 - 831  

Patil, Mahesh Suresh (School of Mechanical Engineering, Dong-A University) ,  Cho, Chong-Pyo (Korea Institute of Energy Research) ,  Lee, Moo-Yeon (School of Mechanical Engineering, Dong-A University)

Abstract AI-Helper 아이콘AI-Helper

Abstract This study used a numerical method to investigate the thermal performance of a 2.0 kW burner in heating the cabin of an electric passenger vehicle. The thermal performance (including temperature distribution, velocity distribution, heat flux, burner efficiency) and fuel performance (includ...

주제어

참고문헌 (61)

  1. J. Power Sources Campanari 186 2 464 2009 10.1016/j.jpowsour.2008.09.115 Energy analysis of electric vehicles using batteries or fuel cells through well-to-wheel driving cycle simulations 

  2. Eurostat website: http://epp.eurostat.ec.europa.eu, 2008. 

  3. Energy Pol. Andersen 37 7 2481 2009 10.1016/j.enpol.2009.03.032 Integrating private transport into renewable en-ergy policy: the strategy of creating intelligent recharging grids for electric vehicles 

  4. 10.4271/2014-01-1817 M. De Gennaro, E. Paffumi, G. Martini, U. Manfredi, et al., Experimental investigation of the energy efficiency of an electric vehicle in different driving conditions, SAE Tech. Paper 2014-01-1817, 2014. http://doi.org/10.4271/2014-01-1817. 

  5. Transp. Res. Part C: Emerging Technol. Feng 26 135 2013 10.1016/j.trc.2012.06.007 An economic and technological analysis of the key factors affecting the competitiveness of electric commercial vehicles: a case study from the USA market 

  6. Renew. Sust. Energ. Rev. Al-Alawi 21 190 2013 10.1016/j.rser.2012.12.048 Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies 

  7. Energy Noori 89 610 2015 10.1016/j.energy.2015.05.152 Electric vehicle cost, emissions, and water footprint in the United States: development of a regional optimization model 

  8. Transp. Policy She 56 29 2017 10.1016/j.tranpol.2017.03.001 What are the barriers to widespread adoption of battery electric vehicles? A survey of public perception in Tianjin, China 

  9. J. Power Sources Rezvanizaniani 256 110 2014 10.1016/j.jpowsour.2014.01.085 Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility 

  10. A.A. Pesaran, Battery thermal management in EVs and HEVs: issues and solutions, in: Advaced Automotive Battery Conference, Las Vegas, Nevada, 2001. 

  11. 10.1109/ESARS.2012.6387434 O. Veneri, L. Ferraro, C. Capasso, D. Iannuzzi, Charging infrastructures for EV: overview of technologies and issues, In: Electrical Systems for Aircraft, Railway and Ship Propulsion (ESARS), Bologna, 1-6, 2012. 

  12. Renew. Sust. Energ. Rev. Croitoru 44 304 2015 10.1016/j.rser.2014.10.105 Thermal comfort models for indoor spaces and vehicles-current capabilities and future perspectives 

  13. Appl. Therm. Eng. Alahmer 31 6-7 995 2011 10.1016/j.applthermaleng.2010.12.004 Vehicular thermal comfort models; a comprehensive review 

  14. Appl. Therm. Eng. Zhang 29 10 2022 2009 10.1016/j.applthermaleng.2008.10.005 Studies of air-flow and temperature fields inside a passenger compartment for improving thermal comfort and saving energy. Part I: test/numerical model and validation 

  15. Appl. Therm. Eng. Zhang 29 10 2028 2009 10.1016/j.applthermaleng.2008.10.006 Studies of air-flow and temperature fields inside a passenger compartment for improving thermal comfort and saving energy. Part II: simulation results and discussion 

  16. Energy Convers. Manage Qin 102 39 2015 10.1016/j.enconman.2015.01.024 Experimental investigation on heating performance of heat pump for electric vehicles at ?20 °C ambient temperature 

  17. Int. J. Air-Cond. Refrig. Seo 21 02 1330001 2013 10.1142/S2010132513300012 Review of combustion air conditioning system for internal combustion engines 

  18. Appl. Therm. Eng. Stobart 112 1433 2017 10.1016/j.applthermaleng.2016.09.121 Comprehensive analysis of thermoelectric generation systems for automotive applications 

  19. Appl. Therm. Eng. Bari 61 2 355 2013 10.1016/j.applthermaleng.2013.08.020 Waste heat recovery from a diesel engine using shell and tube heat exchanger 

  20. 10.4271/2013-01-0040 J. Lee, S. Kwon, Y. Lim, M. Chon, et al., Effect of air-conditioning on driving range of electric vehicle for various driving modes, SAE Tech. Paper 2013-01-0040, 2013. http://doi.org/10.4271/2013-01-0040 

  21. J.T. Lee, S.K. Kwon, Y.S. Lim, M.S. Chon, D.S. Kim, Effect of air-conditioning on driving range of electric vehicle for various driving modes, SAE Tech. Paper No. 2013-01-0040, 2013. 

  22. Renew. Sust. Energ. Rev. Qi 38 754 2014 10.1016/j.rser.2014.07.038 Advances on air conditioning and heat pump system in electric vehicles - A review 

  23. Int. J. Automot. Technol. Kim 13 6 971 2012 10.1007/s12239-012-0099-z Experimental studies on the heating performance of the PTC heater and heat pump combined system in fuel cells and electric vehicles 

  24. Appl. Therm. Eng. Zhang 110 2017 10.1016/j.applthermaleng.2016.08.186 Climate control loads prediction of electric vehicles 

  25. Automotive Thermal Systems Department, Mitsubishi Heavy Industries, PTC Heater for Electric Vehicles and Plug-in Hybrid Vehicles Using Water Heat Carrier, Mitsubishi Heavy Indust. Tech. Rev. 46(4) (2010) 19-21. 

  26. K. Umezu, H. Noyama, Air-conditioning system for electric vehicles (i-MiEV), in: SAE Automotive Refrigerant & System Efficiency SYMP., 2010. 

  27. 10.1109/EVS.2013.6914919 J. Laurikko, R. Granstrom, A. Haakana, Realistic estimates of EV range based on extensive laboratory and field tests in Nordic climate conditions, in: EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium, Barcelona, Spain, November 17-20, 2013. 

  28. B. Torregrosa, J. Paya, J.M. Corberan, Modelling of mobile air conditioning systems for electric vehicles, in: Presented at 4th European Workshop MAC and Vehicle Thermal Systems, Italy, December 1-2, 2011. 

  29. Energies Peng 9 4 240 2016 10.3390/en9040240 Progress in heat pump air conditioning systems for electric vehicles-a review 

  30. Energy Convers. Manage. Hosoz 47 545 2006 10.1016/j.enconman.2005.05.004 Performance evaluation of an integrated automotive air conditioning and heat pump system 

  31. Int. J. Air-Cond. Refrig. Keryakos 25 01 1750009 2017 10.1142/S2010132517500092 Frost growth investigation and temperature glide refrigerants in a fin-and-tube heat exchanger 

  32. Appl. Therm. Eng. Zhou 116 677 2017 10.1016/j.applthermaleng.2017.01.088 Experimental study on combined defrosting performance of heat pump air conditioning system for pure electric vehicle in low temperature 

  33. Appl. Therm. Eng. Jaime 115 2017 Thermal characterisation of compact heat exchangers for air heating and cooling in electric vehicles 

  34. Int. J. Refrig. Kim 30 1195 2007 10.1016/j.ijrefrig.2007.02.008 Performance evaluation of a CO2 heat pump system for fuel cell vehicles considering the heat exchanger arrangements 

  35. Energies Cho 5 3 658 2012 10.3390/en5030658 Measurement and evaluation of heating performance of heat pump system using wasted heat of electric devices for an electric bus 

  36. J. Mech. Sci. Tech. Lee 26 2065 2012 10.1007/s12206-012-0516-2 Heating performance characteristics of stack coolant source heat pump using R744 for fuel cell electric vehicles 

  37. Appl. Therm. Eng. Lee 50 660 2013 10.1016/j.applthermaleng.2012.07.001 Performance characteristics of mobile heat pump for a large passenger electric vehicle 

  38. SAE Tech. Paper Kelling 922434 1992 10.4271/922434 Diesel fuel fired heaters 

  39. BP Statistical Review of World Energy June 2017, accesses on 28 December, 2017 (URL: https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review-2017/bp-statistical-review-of-world-energy-2017-full-report.pdf). 

  40. 10.1016/j.trd.2017.10.015 Dennis Dreier, Semida Silveira, Dilip Khatiwada, Keiko V.O. Fonseca, Rafael Nieweglowski, Renan Schepanski, Well-to-Wheel analysis of fossil energy use and greenhouse gas emissions for conventional, hybrid-electric and plug-in hybrid-electric city buses in the BRT system in Curitiba, Brazil, Transp. Res. Part D: Transp. Environ., Vol. 58, January 2018, Pages 122-138. 

  41. Int. J. Heat Mass Transfer Seo 117 80 2018 10.1016/j.ijheatmasstransfer.2017.10.007 Heat transfer characteristics of the integrated heating system for cabin and battery of an electric vehicle under cold weather conditions 

  42. Appl. Therm. Eng. Gaikwad 124 734 2017 10.1016/j.applthermaleng.2017.06.069 Simplified numerical modelling of oxy-fuel combustion of pulverized coal in a swirl burner 

  43. 10.1142/S2010132513500077 H.J. Kim, Y.S. Lee, J. Ahn, Combustion simulation of 1kW class LNG stirling engine CHP system considering heat recovery, Int. J. Air-Cond. Refrig., 21 (01), 2013, 1350007. 

  44. Energy Panigrahy 95 404 2016 10.1016/j.energy.2015.12.015 Numerical and experimental analyses of LPG (liquefied petroleum gas) combustion in a domestic cooking stove with a porous radiant burner 

  45. ANSYS® Academic Research, Release 17.0 

  46. Int. J. Numer. Methods Fluids Utyuzhnikov 47 1323 2005 10.1002/fld.873 Generalized wall functions and their application for simulation of turbulent flows 

  47. Int. J. Heat Mass Transf. Kader 9 1541 1981 10.1016/0017-9310(81)90220-9 Temperature and concentration profiles in fully turbulent boundary layers 

  48. ANSYS, Ansys Fluent theory guide, Release 17.0 

  49. Modest 2003 Radiative Heat Transfer 

  50. Int. J. Heat Mass Transf. Kayakol 40 213 1997 10.1016/0017-9310(96)00139-1 Evaluation of discrete ordinates method for radiative transfer in rectangular furnaces 

  51. Combust. Sci. Technol. Westbrook 27 31 1981 10.1080/00102208108946970 Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames 

  52. J.W. Rose, J.R. Cooper (Eds.), Technical Data on Fuels, Wiley, 7th edition, 1977. 

  53. Turns 2012 An Introduction to Combustion: Concepts and Applications 

  54. Launder 1972 Lectures in Mathematical Models of Turbulence 

  55. S. Orszag, V. Yakhot, W. Flannery, F. Boysan, D. Choudhury, J. Maruzewski et al. Renormalization group modeling and turbulence simulation, In: International Conference on Near-Wall Turbulent Flows, Tempe, Arizona, 1993. 

  56. Comput. Fluids Shih 24 227 1995 10.1016/0045-7930(94)00032-T A new k-e Eddy-Viscosity model for high Reynolds number turbulent flows - model development and validation 

  57. Flow Turbul. Combust. De 87 537 2011 10.1007/s10494-011-9337-0 Numerical simulation of Delf-Jet-in- Hot-Coflow (DJHC) flame using eddy dissipation concept model for turbulentchemistry interaction 

  58. Comput. Meth. Appl. Mech. Eng. Launder 3 269 1974 10.1016/0045-7825(74)90029-2 The numerical computation of turbulent flows 

  59. Indust. Eng. Chem. Fundam. Peng 15 1 59 1976 10.1021/i160057a011 A new two-constant equation of state 

  60. Azbil Corporation. (URL:http://www.azbil.com/products/factory/download/index.html) (accessed on 25 April, 2017). 

  61. GRAPHTEC Corporation. (URL: http://www.graphteccorp.com/) (accessed om 25 April 2017). 

LOADING...

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로