$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

The Nano-Bio Interactions of Nanomedicines: Understanding the Biochemical Driving Forces and Redox Reactions

Accounts of chemical research, v.52 no.6, 2019년, pp.1507 - 1518  

Wang, Yaling (CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China) ,  Cai, Rong (CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China) ,  Chen, Chunying

Abstract AI-Helper 아이콘AI-Helper

ConspectusEngineered nanomaterials (ENMs) have been developed for imaging, drug delivery, diagnosis, and clinical therapeutic purposes because of their outstanding physicochemical characteristics. However, the function and ultimate efficiency of nanomedicines remain unsatisfactory for clinical appli...

참고문헌 (55)

  1. Wilhelm, Stefan, Tavares, Anthony J., Dai, Qin, Ohta, Seiichi, Audet, Julie, Dvorak, Harold F., Chan, Warren C. W.. Analysis of nanoparticle delivery to tumours. Nature reviews. Materials, vol.1, no.5, 16014-.

  2. Miclăuş, Teodora, Beer, Christiane, Chevallier, Jacques, Scavenius, Carsten, Bochenkov, Vladimir E., Enghild, Jan J., Sutherland, Duncan S.. Dynamic protein coronas revealed as a modulator of silver nanoparticle sulphidation in vitro. Nature communications, vol.7, 11770-.

  3. Nel, Andre E., Mädler, Lutz, Velegol, Darrell, Xia, Tian, Hoek, Eric M. V., Somasundaran, Ponisseril, Klaessig, Fred, Castranova, Vince, Thompson, Mike. Understanding biophysicochemical interactions at the nano–bio interface. Nature materials, vol.8, no.7, 543-557.

  4. Park, S., Hamad-Schifferli, K.. Nanoscale interfaces to biology. Current opinion in chemical biology, vol.14, no.5, 616-622.

  5. Monopoli, Marco P., Åberg, Christoffer, Salvati, Anna, Dawson, Kenneth A.. Biomolecular coronas provide the biological identity of nanosized materials. Nature nanotechnology, vol.7, no.12, 779-786.

  6. Cai, Rong, Chen, Chunying. Protein corona in vivo: dynamic complement proteins-mediated opsonization and immune modulation. Science bulletin = 科學通報 (英文版), vol.62, no.14, 976-977.

  7. Walkey, Carl D., Chan, Warren C. W.. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chemical Society reviews, vol.41, no.7, 2780-2799.

  8. Wang, Xinyi, Wang, Xiaofeng, Bai, Xuan, Yan, Liang, Liu, Tao, Wang, Mingzhe, Song, Youtao, Hu, Guoqing, Gu, Zhanjun, Miao, Qing, Chen, Chunying. Nanoparticle Ligand Exchange and Its Effects at the Nanoparticle-Cell Membrane Interface. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.19, no.1, 8-18.

  9. Chen, Rui, Huo, Lingling, Shi, Xiaofei, Bai, Ru, Zhang, Zhenjiang, Zhao, Yuliang, Chang, Yanzhong, Chen, Chunying. Endoplasmic Reticulum Stress Induced by Zinc Oxide Nanoparticles Is an Earlier Biomarker for Nanotoxicological Evaluation. ACS nano, vol.8, no.3, 2562-2574.

  10. Yin, Hong, Chen, Rui, Casey, Philip S., Ke, Pu Chun, Davis, Thomas P., Chen, Chunying. Reducing the cytotoxicity of ZnO nanoparticles by a pre-formed protein corona in a supplemented cell culture medium. RSC advances, vol.5, no.90, 73963-73973.

  11. Tian, Xin, Jiang, Xiumei, Welch, Cara, Croley, Timothy R., Wong, Tit-Yee, Chen, Chao, Fan, Sanhong, Chong, Yu, Li, Ruibin, Ge, Cuicui, Chen, Chunying, Yin, Jun-Jie. Bactericidal Effects of Silver Nanoparticles on Lactobacilli and the Underlying Mechanism. ACS applied materials & interfaces, vol.10, no.10, 8443-8450.

  12. Rodriguez-Quijada, Cristina, Sánchez-Purrà, Maria, de Puig, Helena, Hamad-Schifferli, Kimberly. Physical Properties of Biomolecules at the Nanomaterial Interface. The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, vol.122, no.11, 2827-2840.

  13. Ge, Cuicui, Du, Jiangfeng, Zhao, Lina, Wang, Liming, Liu, Ying, Li, Denghua, Yang, Yanlian, Zhou, Ruhong, Zhao, Yuliang, Chai, Zhifang, Chen, Chunying. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proceedings of the National Academy of Sciences of the United States of America, vol.108, no.41, 16968-16973.

  14. Abraham, Amanda N., Sharma, Tarun K., Bansal, Vipul, Shukla, Ravi. Phytochemicals as Dynamic Surface Ligands To Control Nanoparticle–Protein Interactions. ACS omega, vol.3, no.2, 2220-2229.

  15. Tan, Shu Fen, Raj, Sanoj, Bisht, Geeta, Annadata, Harshini V., Nijhuis, Christian A., Král, Petr, Mirsaidov, Utkur. Nanoparticle Interactions Guided by Shape‐Dependent Hydrophobic Forces. Advanced materials, vol.30, no.16, 1707077-.

  16. Wang, Xinyi, Wang, Mingzhe, Lei, Rong, Zhu, Shui Fang, Zhao, Yuliang, Chen, Chunying. Chiral Surface of Nanoparticles Determines the Orientation of Adsorbed Transferrin and Its Interaction with Receptors. ACS nano, vol.11, no.5, 4606-4616.

  17. Wang, Xinyi, Wang, Xiaofeng, Wang, Mingzhe, Zhang, Di, Yang, Qi, Liu, Tao, Lei, Rong, Zhu, Shuifang, Zhao, Yuliang, Chen, Chunying. Probing Adsorption Behaviors of BSA onto Chiral Surfaces of Nanoparticles. Small, vol.14, no.16, 1703982-.

  18. Hu, Kelei, Zhou, Huige, Liu, Ying, Liu, Zhu, Liu, Jing, Tang, Jinglong, Li, Jiayang, Zhang, Jiakun, Sheng, Wang, Zhao, Yuliang, Wu, Yan, Chen, Chunying. Hyaluronic acid functional amphipathic and redox-responsive polymer particles for the co-delivery of doxorubicin and cyclopamine to eradicate breast cancer cells and cancer stem cells. Nanoscale, vol.7, no.18, 8607-8618.

  19. Gu, Xin, Zhou, Jun, Zhou, Lu, Xie, Shusen, Petti, Lucia, Wang, Shaomin, Wang, Fuyan. Specific binding of antigen-antibody in physiological environments: Measurement, force characteristics and analysis. Optics and lasers in engineering, vol.104, 252-258.

  20. Sun, Yuhuan, Zhao, Chuanqi, Gao, Nan, Ren, Jinsong, Qu, Xiaogang. Stereoselective Nanozyme Based on Ceria Nanoparticles Engineered with Amino Acids. Chemistry : a European journal, vol.23, no.72, 18146-18150.

  21. Mirshafiee, Vahid, Sun, Bingbing, Chang, Chong Hyun, Liao, Yu-Pei, Jiang, Wen, Jiang, Jinhong, Liu, Xiangsheng, Wang, Xiang, Xia, Tian, Nel, André E.. Toxicological Profiling of Metal Oxide Nanoparticles in Liver Context Reveals Pyroptosis in Kupffer Cells and Macrophages versus Apoptosis in Hepatocytes. ACS nano, vol.12, no.4, 3836-3852.

  22. Du, Jiangfeng, Gu, Zhanjun, Yan, Liang, Yong, Yuan, Yi, Xuan, Zhang, Xiao, Liu, Jing, Wu, Renfei, Ge, Cuicui, Chen, Chunying, Zhao, Yuliang. Poly(Vinylpyrollidone)‐ and Selenocysteine‐Modified Bi2Se3 Nanoparticles Enhance Radiotherapy Efficacy in Tumors and Promote Radioprotection in Normal Tissues. Advanced materials, vol.29, no.34, 1701268-.

  23. Wang, Jinping, Zhang, Luyao, Peng, Fei, Shi, Xinghua, Leong, David Tai. Targeting Endothelial Cell Junctions with Negatively Charged Gold Nanoparticles. Chemistry of materials : a publication of the American Chemical Society, vol.30, no.11, 3759-3767.

  24. Peng, Fei, Setyawati, Magdiel Inggrid, Tee, Jie Kai, Ding, Xianguang, Wang, Jinping, Nga, Min En, Ho, Han Kiat, Leong, David Tai. Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness. Nature nanotechnology, vol.14, no.3, 279-286.

  25. Bahrami, Amir Houshang, Weikl, Thomas R.. Curvature-Mediated Assembly of Janus Nanoparticles on Membrane Vesicles. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.18, no.2, 1259-1263.

  26. Wang, Liming, Li, Jingyuan, Pan, Jun, Jiang, Xiumei, Ji, Yinglu, Li, Yufeng, Qu, Ying, Zhao, Yuliang, Wu, Xiaochun, Chen, Chunying. Revealing the Binding Structure of the Protein Corona on Gold Nanorods Using Synchrotron Radiation-Based Techniques: Understanding the Reduced Damage in Cell Membranes. Journal of the American Chemical Society, vol.135, no.46, 17359-17368.

  27. Zheng, Xiao-Yu, Zhao, Kai, Tang, Jinglong, Wang, Xin-Yu, Li, Lin-Dong, Chen, Nai-Xiu, Wang, Yan-Jie, Shi, Shuo, Zhang, Xiaodong, Malaisamy, Sivakumar, Sun, Ling-Dong, Wang, Xiaoying, Chen, Chunying, Yan, Chun-Hua. Gd-Dots with Strong Ligand–Water Interaction for Ultrasensitive Magnetic Resonance Renography. ACS nano, vol.11, no.4, 3642-3650.

  28. Chong, Yu, Dai, Xing, Fang, Ge, Wu, Renfei, Zhao, Lin, Ma, Xiaochuan, Tian, Xin, Lee, Sangyun, Zhang, Chao, Chen, Chunying, Chai, Zhifang, Ge, Cuicui, Zhou, Ruhong. Palladium concave nanocrystals with high-index facets accelerate ascorbate oxidation in cancer treatment. Nature communications, vol.9, no.1, 4861-.

  29. Tsoi, Kim M., MacParland, Sonya A., Ma, Xue-Zhong, Spetzler, Vinzent N., Echeverri, Juan, Ouyang, Ben, Fadel, Saleh M., Sykes, Edward A., Goldaracena, Nicolas, Kaths, Johann M., Conneely, John B., Alman, Benjamin A., Selzner, Markus, Ostrowski, Mario A., Adeyi, Oyedele A., Zilman, Anton, McGilvray, Ian D., Chan, Warren C.W.. Mechanism of hard nanomaterial clearance by the liver. Nature materials, vol.15, no.11, 1212-1221.

  30. Yu, Miaorong, Song, Wenyi, Tian, Falin, Dai, Zhuo, Zhu, Quanlei, Ahmad, Ejaj, Guo, Shiyan, Zhu, Chunliu, Zhong, Haijun, Yuan, Yongchun, Zhang, Tao, Yi, Xin, Shi, Xinghua, Gan, Yong, Gao, Huajian. Temperature- and rigidity-mediated rapid transport of lipid nanovesicles in hydrogels. Proceedings of the National Academy of Sciences of the United States of America, vol.116, no.12, 5362-5369.

  31. Wang, Yanlei, Qin, Zhao, Buehler, Markus J., Xu, Zhiping. Intercalated water layers promote thermal dissipation at bio–nano interfaces. Nature communications, vol.7, 12854-.

  32. Ezraty, Benjamin, Gennaris, Alexandra, Barras, Frédéric, Collet, Jean-François. Oxidative stress, protein damage and repair in bacteria. Nature reviews. Microbiology, vol.15, no.7, 385-396.

  33. Catalano, Federico, Accomasso, Lisa, Alberto, Gabriele, Gallina, Clara, Raimondo, Stefania, Geuna, Stefano, Giachino, Claudia, Martra, Gianmario. Factors Ruling the Uptake of Silica Nanoparticles by Mesenchymal Stem Cells: Agglomeration Versus Dispersions, Absence Versus Presence of Serum Proteins. Small, vol.11, no.24, 2919-2928.

  34. Nel, Andre, Xia, Tian, Mädler, Lutz, Li, Ning. Toxic Potential of Materials at the Nanolevel. Science, vol.311, no.5761, 622-627.

  35. Maiorano, Gabriele, Sabella, Stefania, Sorce, Barbara, Brunetti, Virgilio, Malvindi, Maria Ada, Cingolani, Roberto, Pompa, Pier Paolo. Effects of Cell Culture Media on the Dynamic Formation of Protein−Nanoparticle Complexes and Influence on the Cellular Response. ACS nano, vol.4, no.12, 7481-7491.

  36. Lao, Fang, Chen, Long, Li, Wei, Ge, Cuicui, Qu, Ying, Sun, Quanmei, Zhao, Yuliang, Han, Dong, Chen, Chunying. Fullerene Nanoparticles Selectively Enter Oxidation-Damaged Cerebral Microvessel Endothelial Cells and Inhibit JNK-Related Apoptosis. ACS nano, vol.3, no.11, 3358-3368.

  37. Chong, Yu, Ge, Cuicui, Fang, Ge, Wu, Renfei, Zhang, He, Chai, Zhifang, Chen, Chunying, Yin, Jun-Jie. Light-Enhanced Antibacterial Activity of Graphene Oxide, Mainly via Accelerated Electron Transfer. Environmental science & technology, vol.51, no.17, 10154-10161.

  38. Zhou, H., Zhang, B., Zheng, J., Yu, M., Zhou, T., Zhao, K., Jia, Y., Gao, X., Chen, C., Wei, T.. The inhibition of migration and invasion of cancer cells by graphene via the impairment of mitochondrial respiration. Biomaterials, vol.35, no.5, 1597-1607.

  39. Wang, Zhenzhen, Wang, Chunming, Liu, Shang, He, Wei, Wang, Lintao, Gan, JingJing, Huang, Zhen, Wang, Zhenheng, Wei, Haoyang, Zhang, Junfeng, Dong, Lei. Specifically Formed Corona on Silica Nanoparticles Enhances Transforming Growth Factor β1 Activity in Triggering Lung Fibrosis. ACS nano, vol.11, no.2, 1659-1672.

  40. Zhang, Haiyuan, Ji, Zhaoxia, Xia, Tian, Meng, Huan, Low-Kam, Cecile, Liu, Rong, Pokhrel, Suman, Lin, Sijie, Wang, Xiang, Liao, Yu-Pei, Wang, Meiying, Li, Linjiang, Rallo, Robert, Damoiseaux, Robert, Telesca, Donatello, Mädler, Lutz, Cohen, Yoram, Zink, Jeffrey I., Nel, Andre E.. Use of Metal Oxide Nanoparticle Band Gap To Develop a Predictive Paradigm for Oxidative Stress and Acute Pulmonary Inflammation. ACS nano, vol.6, no.5, 4349-4368.

  41. Burello, Enrico, Worth, Andrew P.. A theoretical framework for predicting the oxidative stress potential of oxide nanoparticles. Nanotoxicology, vol.5, no.2, 228-235.

  42. Xu, Yong, Schoonen, Martin A.A.. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. The American mineralogist, vol.85, no.3, 543-556.

  43. Ge, Cuicui, Fang, Ge, Shen, Xiaomei, Chong, Yu, Wamer, Wayne G., Gao, Xingfa, Chai, Zhifang, Chen, Chunying, Yin, Jun-Jie. Facet Energy versus Enzyme-like Activities: The Unexpected Protection of Palladium Nanocrystals against Oxidative Damage. ACS nano, vol.10, no.11, 10436-10445.

  44. Li, Yuanyuan, He, Xiao, Yin, Jun‐Jie, Ma, Yuhui, Zhang, Peng, Li, Jingyuan, Ding, Yayun, Zhang, Jing, Zhao, Yuliang, Chai, Zhifang, Zhang, Zhiyong. Acquired Superoxide‐Scavenging Ability of Ceria Nanoparticles. Angewandte Chemie. international edition, vol.54, no.6, 1832-1835.

  45. Fang, Ge, Li, Weifeng, Shen, Xiaomei, Perez-Aguilar, Jose Manuel, Chong, Yu, Gao, Xingfa, Chai, Zhifang, Chen, Chunying, Ge, Cuicui, Zhou, Ruhong. Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria. Nature communications, vol.9, no.1, 129-.

  46. Yi, Zhiguo, Ye, Jinhua, Kikugawa, Naoki, Kako, Tetsuya, Ouyang, Shuxin, Stuart-Williams, Hilary, Yang, Hui, Cao, Junyu, Luo, Wenjun, Li, Zhaosheng, Liu, Yun, Withers, Ray L.. An orthophosphate semiconductor with photooxidation properties under visible-light?irradiation. Nature materials, vol.9, no.7, 559-564.

  47. Wang, Liming, Sun, Qiang, Wang, Xin, Wen, Tao, Yin, Jun-Jie, Wang, Pengyang, Bai, Ru, Zhang, Xiang-Qian, Zhang, Lu-Hua, Lu, An-Hui, Chen, Chunying. Using Hollow Carbon Nanospheres as a Light-Induced Free Radical Generator To Overcome Chemotherapy Resistance. Journal of the American Chemical Society, vol.137, no.5, 1947-1955.

  48. Auffan, Mélanie, Rose, Jérôme, Bottero, Jean-Yves, Lowry, Gregory V., Jolivet, Jean-Pierre, Wiesner, Mark R.. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature nanotechnology, vol.4, no.10, 634-641.

  49. Hartmann, Pascal, Brezesinski, Torsten, Sann, Joachim, Lotnyk, Andriy, Eufinger, Jens-Peter, Kienle, Lorenz, Janek, Jürgen. Defect Chemistry of Oxide Nanomaterials with High Surface Area: Ordered Mesoporous Thin Films of the Oxygen Storage Catalyst CeO2–ZrO2. ACS nano, vol.7, no.4, 2999-3013.

  50. He, W., Zhou, Y.T., Wamer, W.G., Boudreau, M.D., Yin, J.J.. Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles. Biomaterials, vol.33, no.30, 7547-7555.

  51. Plumlee, G. S., Morman, S. A., Ziegler, T. L.. The Toxicological Geochemistry of Earth Materials: An Overview of Processes and the Interdisciplinary Methods Used to Understand Them. Reviews in mineralogy and geochemistry, vol.64, no.1, 5-57.

  52. Sheng, Yuewei, Abreu, Isabel A., Cabelli, Diane E., Maroney, Michael J., Miller, Anne-Frances, Teixeira, Miguel, Valentine, Joan Selverstone. Superoxide Dismutases and Superoxide Reductases. Chemical reviews, vol.114, no.7, 3854-3918.

  53. Koppenol, W.H., Stanbury, D.M., Bounds, P.L.. Electrode potentials of partially reduced oxygen species, from dioxygen to water. Free radical biology & medicine, vol.49, no.3, 317-322.

  54. Chong, Yu, Ge, Cuicui, Fang, Ge, Tian, Xin, Ma, Xiaochuan, Wen, Tao, Wamer, Wayne G., Chen, Chunying, Chai, Zhifang, Yin, Jun-Jie. Crossover between Anti- and Pro-oxidant Activities of Graphene Quantum Dots in the Absence or Presence of Light. ACS nano, vol.10, no.9, 8690-8699.

  55. Chen, Huabing, Gu, Zhanjun, An, Hongwei, Chen, Chunying, Chen, Jie, Cui, Ran, Chen, Siqin, Chen, Weihai, Chen, Xuesi, Chen, Xiaoyuan, Chen, Zhuo, Ding, Baoquan, Dong, Qian, Fan, Qin, Fu, Ting, Hou, Dayong, Jiang, Qiao, Ke, Hengte, Jiang, Xiqun, Liu, Gang, Li, Suping, Li, Tianyu, Liu, Zhuang, Nie, Guangjun, Ovais, Muhammad, Pang, Daiwen, Qiu, Nasha, Shen, Youqing, Tian, Huayu, Wang, Chao, Wang, Hao, Wang, Ziqi, Xu, Huaping, Xu, Jiang-Fei, Yang, Xiangliang, Zhu, Shuang, Zheng, Xianchuang, Zhang, Xianzheng, Zhao, Yanbing, Tan, Weihong, Zhang, Xi, Zhao, Yuliang. Precise nanomedicine for intelligent therapy of cancer. Science China. Chemistry, vol.61, no.12, 1503-1552.

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로