$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Amorphous Tin Oxide Nanohelix Structure Based Electrode for Highly Reversible Na-Ion Batteries

ACS nano, v.13 no.6, 2019년, pp.6513 - 6521  

Choi, Il Yong (Department of Materials Science and Engineering , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , Republic of Korea) ,  Jo, Changshin (Department of Chemical Engineering , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , Republic of Korea) ,  Lim, Won-Gwang (Department of Chemical Engineering , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , Republic of Korea) ,  Han, Jong-Chan (Department of Materials Science and Engineering , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , Republic of Korea) ,  Chae, Byeong-Gyu (Department of Materials Science and Engineering , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , Republic of Korea) ,  Park, Chan Gyung (Department of Materials Science and Engineering , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , Republic o) ,  Lee, Jinwoo ,  Kim, Jong Kyu

Abstract AI-Helper 아이콘AI-Helper

An array of amorphous tin oxide (a-SnOx) nanohelixes (NHs) was fabricated on copper foil as an electrode for Na-ion batteries via the oblique angle deposition method, a solution- and surfactant-free process. The combination of the amorphous phase SnOx with a low oxidation number and its vertically a...

Keyword

참고문헌 (38)

  1. Xu, Yang, Zhou, Min, Lei, Yong. Nanoarchitectured Array Electrodes for Rechargeable Lithium‐ and Sodium‐Ion Batteries. Advanced energy materials, vol.6, no.10, 1502514-.

  2. Vaalma, Christoph, Buchholz, Daniel, Weil, Marcel, Passerini, Stefano. A cost and resource analysis of sodium-ion batteries. Nature reviews. Materials, vol.3, no.2, 18013-.

  3. Doeff, Marca M., Ma, Yanping, Visco, Steven J., De Jonghe, Lutgard C.. Electrochemical Insertion of Sodium into Carbon. Journal of the Electrochemical Society : JES, vol.140, no.12, L169-L170.

  4. Thomas, P, Billaud, D. Electrochemical insertion of sodium into hard carbons. Electrochimica acta, vol.47, no.20, 3303-3307.

  5. Jo, Changshin, Park, Yuwon, Jeong, Jooyoung, Lee, Kyu Tae, Lee, Jinwoo. Structural Effect on Electrochemical Performance of Ordered Porous Carbon Electrodes for Na-Ion Batteries. ACS applied materials & interfaces, vol.7, no.22, 11748-11754.

  6. Kim, Haegyeom, Hong, Jihyun, Yoon, Gabin, Kim, Hyunchul, Park, Kyu-Young, Park, Min-Sik, Yoon, Won-Sub, Kang, Kisuk. Sodium intercalation chemistry in graphite. Energy & environmental science, vol.8, no.10, 2963-2969.

  7. Kim, Youngjin, Ha, Kwang‐Ho, Oh, Seung M., Lee, Kyu Tae. High‐Capacity Anode Materials for Sodium‐Ion Batteries. Chemistry : a European journal, vol.20, no.38, 11980-11992.

  8. Kim, Hyunchul, Park, Gwi Ok, Kim, Yunok, Muhammad, Shoaib, Yoo, Jaeseung, Balasubramanian, Mahalingam, Cho, Yong-Hun, Kim, Min-Gyu, Lee, Byungju, Kang, Kisuk, Kim, Hansu, Kim, Ji Man, Yoon, Won-Sub. New Insight into the Reaction Mechanism for Exceptional Capacity of Ordered Mesoporous SnO2 Electrodes via Synchrotron-Based X-ray Analysis. Chemistry of materials : a publication of the American Chemical Society, vol.26, no.22, 6361-6370.

  9. Ao, Xiang, Jiang, Jianjun, Ruan, Yunjun, Li, Zhishan, Zhang, Yi, Sun, Jianwu, Wang, Chundong. Honeycomb-inspired design of ultrafine SnO2@C nanospheres embedded in carbon film as anode materials for high performance lithium- and sodium-ion battery. Journal of power sources, vol.359, 340-348.

  10. Cui, Jiang, Xu, Zheng-Long, Yao, Shanshan, Huang, Jiaqiang, Huang, Jian-Qiu, Abouali, Sara, Garakani, Mohammad Akbari, Ning, Xiaohui, Kim, Jang-Kyo. Enhanced conversion reaction kinetics in low crystallinity SnO2/CNT anodes for Na-ion batteries. Journal of materials chemistry. A, Materials for energy and sustainability, vol.4, no.28, 10964-10973.

  11. Fan, Linlin, Li, Xifei, Yan, Bo, Feng, Jianmin, Xiong, Dongbin, Li, Dejun, Gu, Lin, Wen, Yuren, Lawes, Stephen, Sun, Xueliang. Controlled SnO2 Crystallinity Effectively Dominating Sodium Storage Performance. Advanced energy materials, vol.6, no.10, 1502057-.

  12. Ku, Jun H., Ryu, Ji Heon, Kim, Sun Ha, Han, Oc Hee, Oh, Seung M.. Reversible Lithium Storage with High Mobility at Structural Defects in Amorphous Molybdenum Dioxide Electrode. Advanced functional materials, vol.22, no.17, 3658-3664.

  13. Chae, Oh B., Kim, Jisun, Park, Inchul, Jeong, Hyejeong, Ku, Jun H., Ryu, Ji Heon, Kang, Kisuk, Oh, Seung M.. Reversible Lithium Storage at Highly Populated Vacant Sites in an Amorphous Vanadium Pentoxide Electrode. Chemistry of materials : a publication of the American Chemical Society, vol.26, no.20, 5874-5881.

  14. Ren, Yu, Armstrong, A. Robert, Jiao, Feng, Bruce, Peter G.. Influence of Size on the Rate of Mesoporous Electrodes for Lithium Batteries. Journal of the American Chemical Society, vol.132, no.3, 996-1004.

  15. Kim, Gonu, Jo, Changshin, Kim, Wooyul, Chun, Jinyoung, Yoon, Songhun, Lee, Jinwoo, Choi, Wonyong. TiO2 nanodisks designed for Li-ion batteries: a novel strategy for obtaining an ultrathin and high surface area anode material at the ice interface. Energy & environmental science, vol.6, no.10, 2932-2938.

  16. Kim, Jinyoung, Cho, Jaephil. Rate Characteristics of Anatase TiO[sub 2] Nanotubes and Nanorods for Lithium Battery Anode Materials at Room Temperature. Journal of the Electrochemical Society : JES, vol.154, no.6, A542-.

  17. Bian, H., Zhang, J., Yuen, M.F., Kang, W., Zhan, Y., Yu, D.Y.W., Xu, Z., Li, Y.Y.. Anodic nanoporous SnO2 grown on Cu foils as superior binder-free Na-ion battery anodes. Journal of power sources, vol.307, 634-640.

  18. Liu, Y., Fang, X., Ge, M., Rong, J., Shen, C., Zhang, A., Enaya, H.A., Zhou, C.. SnO2 coated carbon cloth with surface modification as Na-ion battery anode. Nano energy, vol.16, 399-407.

  19. Dirican, Mahmut, Lu, Yao, Ge, Yeqian, Yildiz, Ozkan, Zhang, Xiangwu. Carbon-Confined SnO2-Electrodeposited Porous Carbon Nanofiber Composite as High-Capacity Sodium-Ion Battery Anode Material. ACS applied materials & interfaces, vol.7, no.33, 18387-18396.

  20. Su, Dawei, Wang, Chengyin, Ahn, Hyojun, Wang, Guoxiu. Octahedral tin dioxide nanocrystals as high capacity anode materials for Na-ion batteries. Physical chemistry chemical physics : PCCP, vol.15, no.30, 12543-12550.

  21. Gu, Meng, Kushima, Akihiro, Shao, Yuyan, Zhang, Ji-Guang, Liu, Jun, Browning, Nigel D., Li, Ju, Wang, Chongmin. Probing the Failure Mechanism of SnO2 Nanowires for Sodium-Ion Batteries. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.13, no.11, 5203-5211.

  22. Chun, Sungwoo, Choi, Il Yong, Son, Wonkyeong, Bae, Gi Yoon, Lee, Eun Jae, Kwon, Hyunah, Jung, Jaimyun, Kim, Hyoung Seop, Kim, Jong Kyu, Park, Wanjun. A Highly Sensitive Force Sensor with Fast Response Based on Interlocked Arrays of Indium Tin Oxide Nanosprings toward Human Tactile Perception. Advanced functional materials, vol.28, no.42, 1804132-.

  23. Singh, J. P., Karabacak, T., Ye, D.-X., Liu, D.-L., Picu, C., Lu, T.-M., Wang, G.-C.. Physical properties of nanostructures grown by oblique angle deposition. Journal of vacuum science & technology. processing, measurement, and phenomena : an official journal of the American Vacuum Society. B, Microelectronics and nanometer structures, vol.23, no.5, 2114-.

  24. Vijayarangamuthu, K., Rath, S.. Nanoparticle size, oxidation state, and sensing response of tin oxide nanopowders using Raman spectroscopy. Journal of alloys and compounds, vol.610, 706-712.

  25. Zhu, Q., Ma, Q., Buchholz, D. B., Chang, R. P. H., Bedzyk, M. J., Mason, T. O.. Structural anisotropy in amorphous SnO2 film probed by X-ray absorption spectroscopy. Applied physics letters, vol.103, no.3, 031913-.

  26. Kau, Lung Shan, Spira-Solomon, Darlene J., Penner-Hahn, James E., Hodgson, Keith O., Solomon, Edward I.. X-ray absorption edge determination of the oxidation state and coordination number of copper. Application to the type 3 site in Rhus vernicifera laccase and its reaction with oxygen. Journal of the American Chemical Society, vol.109, no.21, 6433-6442.

  27. Dau, Holger, Liebisch, Peter, Haumann, Michael. X-ray absorption spectroscopy to analyze nuclear geometry and electronic structure of biological metal centers?potential and questions examined with special focus on the tetra-nuclear manganese complex of oxygenic photosynthesis. Analytical and bioanalytical chemistry, vol.376, no.5, 562-583.

  28. Hwang, Jongkook, Jo, Changshin, Kim, Min Gyu, Chun, Jinyoung, Lim, Eunho, Kim, Seongseop, Jeong, Sanha, Kim, Youngsik, Lee, Jinwoo. Mesoporous Ge/GeO2/Carbon Lithium-Ion Battery Anodes with High Capacity and High Reversibility. ACS nano, vol.9, no.5, 5299-5309.

  29. Yoon, Songhun, Jo, Changshin, Noh, Soon Young, Lee, Chul Wee, Song, Jun Ho, Lee, Jinwoo. Development of a high-performance anode for lithium ion batteries using novel ordered mesoporous tungsten oxide materials with high electrical conductivity. Physical chemistry chemical physics : PCCP, vol.13, no.23, 11060-11066.

  30. Jo, Changshin, Hwang, Ilkyu, Lee, Jinwoo, Lee, Chul Wee, Yoon, Songhun. Investigation of Pseudocapacitive Charge-Storage Behavior in Highly Conductive Ordered Mesoporous Tungsten Oxide Electrodes. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.115, no.23, 11880-11886.

  31. Xu, Yang, Zhou, Min, Zhang, Chenglin, Wang, Chengliang, Liang, Liying, Fang, Yaoguo, Wu, Minghong, Cheng, Lin, Lei, Yong. Oxygen vacancies: Effective strategy to boost sodium storage of amorphous electrode materials. Nano energy, vol.38, 304-312.

  32. Zhang, Yandong, Xie, Jian, Zhang, Shichao, Zhu, Peiyi, Cao, Gaoshao, Zhao, Xinbing. Ultrafine tin oxide on reduced graphene oxide as high-performance anode for sodium-ion batteries. Electrochimica acta, vol.151, 8-15.

  33. Zhao, Xingxing, Zhang, Zhian, Yang, Fuhua, Fu, Yun, Lai, Yanqing, Li, Jie. Core-shell structured SnO2 hollow spheres-polyaniline composite as an anode for sodium-ion batteries. RSC advances, vol.5, no.40, 31465-31471.

  34. Zhang, Fan, Zhu, Jiajie, Zhang, Daliang, Schwingenschlögl, Udo, Alshareef, Husam N.. Two-Dimensional SnO Anodes with a Tunable Number of Atomic Layers for Sodium Ion Batteries. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.17, no.2, 1302-1311.

  35. Zheng, Yang, Zhou, Tengfei, Zhang, Chaofeng, Mao, Jianfeng, Liu, Huakun, Guo, Zaiping. Boosted Charge Transfer in SnS/SnO2 Heterostructures: Toward High Rate Capability for Sodium‐Ion Batteries. Angewandte Chemie. international edition, vol.55, no.10, 3408-3413.

  36. Lu, Ying Ching, Ma, Chuze, Alvarado, Judith, Kidera, Takafumi, Dimov, Nikolay, Meng, Ying Shirley, Okada, Shigeto. Electrochemical properties of tin oxide anodes for sodium-ion batteries. Journal of power sources, vol.284, 287-295.

  37. Patra, Jagabandhu, Chen, Hung-Ching, Yang, Cheng-Hsien, Hsieh, Chien-Te, Su, Ching-Yuan, Chang, Jeng-Kuei. High dispersion of 1-nm SnO2 particles between graphene nanosheets constructed using supercritical CO2 fluid for sodium-ion battery anodes. Nano energy, vol.28, 124-134.

  38. Liu, Zhiming, Song, Taeseup, Kim, Joo Hyun, Li, Zhangpeng, Xiang, Juan, Lu, Tianchi, Paik, Ungyu. Partially reduced SnO2 nanoparticles anchored on carbon nanofibers for high performance sodium-ion batteries. Electrochemistry communications, vol.72, 91-95.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로