$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Mixed Transition Metal Oxide with Vacancy-Induced Lattice Distortion for Enhanced Catalytic Activity of Oxygen Evolution Reaction

ACS catalysis, v.9 no.8, 2019년, pp.7099 - 7108  

Lee, Hyeon Jeong (School of Chemical and Biological Engineering and Institute of Chemical Process , Seoul National University , 1 Gwanak-ro, Gwanak-gu , Seoul 08826 , Republic of Korea) ,  Back, Seoin (Graduate School of Energy, Environment, Water, and Sustainability (EEWS) , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu , Daejeon 34141 , Republic of Korea) ,  Lee, Ji Hoon (Graduate School of Energy, Environment, Water, and Sustainability (EEWS) , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu , Daejeon 34141 , Republic of Korea) ,  Choi, Sun Hee (Pohang Accelerator Laboratory (PAL) , Pohang University of Science and Technology (POSTECH) , 80 Jigokro-127-beongil, Nam-gu , Pohang , Gyeongbuk 37673 , Republic of Korea) ,  Jung, Yousung ,  Choi, Jang Wook

Abstract AI-Helper 아이콘AI-Helper

The oxygen evolution reaction (OER) constitutes the key limiting process in water electrolysis, and various catalysts have recently been introduced to improve OER efficiency. Vacancy engineering in the crystal lattice is particularly promising in catalyst design, as vacancies could perturb the elect...

Keyword

참고문헌 (70)

  1. Lewis, Nathan S., Nocera, Daniel G.. Powering the planet: Chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences of the United States of America, vol.103, no.43, 15729-15735.

  2. Grätzel, Michael. Photoelectrochemical cells. Nature, vol.414, no.6861, 338-344.

  3. Gust, Devens, Moore, Thomas A., Moore, Ana L.. Solar Fuels via Artificial Photosynthesis. Accounts of chemical research, vol.42, no.12, 1890-1898.

  4. Tachibana, Yasuhiro, Vayssieres, Lionel, Durrant, James R.. Artificial photosynthesis for solar water-splitting. Nature photonics, vol.6, no.8, 511-518.

  5. Walter, Michael G., Warren, Emily L., McKone, James R., Boettcher, Shannon W., Mi, Qixi, Santori, Elizabeth A., Lewis, Nathan S.. Solar Water Splitting Cells. Chemical reviews, vol.110, no.11, 6446-6473.

  6. Maeda, Kazuhiko, Teramura, Kentaro, Lu, Daling, Takata, Tsuyoshi, Saito, Nobuo, Inoue, Yasunobu, Domen, Kazunari. Photocatalyst releasing hydrogen from water. Nature, vol.440, no.7082, 295-295.

  7. Shi, Yanmei, Zhang, Bin. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chemical Society reviews, vol.45, no.6, 1529-1541.

  8. Hurst, James K.. In Pursuit of Water Oxidation Catalysts for Solar Fuel Production. Science, vol.328, no.5976, 315-316.

  9. Suntivich, Jin, May, Kevin J., Gasteiger, Hubert A., Goodenough, John B., Shao-Horn, Yang. A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles. Science, vol.334, no.6061, 1383-1385.

  10. McCrory, Charles C. L., Jung, Suho, Peters, Jonas C., Jaramillo, Thomas F.. Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. Journal of the American Chemical Society, vol.135, no.45, 16977-16987.

  11. Photoelectrochemical Solar Fuel Production Doyle R. L. 41 2016 10.1007/978-3-319-29641-8_2 

  12. Trasatti, S.. Electrocatalysis by oxides - Attempt at a unifying approach. Journal of electroanalytical chemistry and interfacial electrochemistry, vol.111, no.1, 125-131.

  13. Rossmeisl, J., Qu, Z.W., Zhu, H., Kroes, G.J., Norskov, J.K.. Electrolysis of water on oxide surfaces. Journal of electroanalytical chemistry, vol.607, no.1, 83-89.

  14. Lee, Youngmin, Suntivich, Jin, May, KevinJ., Perry, Erin E., Shao-Horn, Yang. Synthesis and Activitiesof Rutile IrO2 and RuO2 Nanoparticles for OxygenEvolution in Acid andAlkaline Solutions. The journal of physical chemistry letters, vol.3, no.3, 399-404.

  15. Hong, Wesley T., Risch, Marcel, Stoerzinger, Kelsey A., Grimaud, Alexis, Suntivich, Jin, Shao-Horn, Yang. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy & environmental science, vol.8, no.5, 1404-1427.

  16. Huynh, Michael, Shi, Chenyang, Billinge, Simon J. L., Nocera, Daniel G.. Nature of Activated Manganese Oxide for Oxygen Evolution. Journal of the American Chemical Society, vol.137, no.47, 14887-14904.

  17. Bergmann, Arno, Martinez-Moreno, Elias, Teschner, Detre, Chernev, Petko, Gliech, Manuel, de Araújo, Jorge Ferreira, Reier, Tobias, Dau, Holger, Strasser, Peter. Reversible amorphization and the catalytically active state of crystalline Co 3 O 4 during oxygen evolution. Nature communications, vol.6, 8625-.

  18. Lu, Zhiyi, Wang, Haotian, Kong, Desheng, Yan, Kai, Hsu, Po-Chun, Zheng, Guangyuan, Yao, Hongbin, Liang, Zheng, Sun, Xiaoming, Cui, Yi. Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction. Nature communications, vol.5, 4345-.

  19. Wang, Jun, Li, Kai, Zhong, Hai‐xia, Xu, Dan, Wang, Zhong‐li, Jiang, Zheng, Wu, Zhi‐jian, Zhang, Xin‐bo. Synergistic Effect between Metal–Nitrogen–Carbon Sheets and NiO Nanoparticles for Enhanced Electrochemical Water‐Oxidation Performance. Angewandte Chemie. international edition, vol.54, no.36, 10530-10534.

  20. Nardi, Katie L., Yang, Nuoya, Dickens, Colin F., Strickler, Alaina L., Bent, Stacey F.. Creating Highly Active Atomic Layer Deposited NiO Electrocatalysts for the Oxygen Evolution Reaction. Advanced energy materials, vol.5, no.17, 1500412-.

  21. Zhao, Yufei, Jia, Xiaodan, Chen, Guangbo, Shang, Lu, Waterhouse, Geoffrey I.N., Wu, Li-Zhu, Tung, Chen-Ho, O’Hare, Dermot, Zhang, Tierui. Ultrafine NiO Nanosheets Stabilized by TiO2 from Monolayer NiTi-LDH Precursors: An Active Water Oxidation Electrocatalyst. Journal of the American Chemical Society, vol.138, no.20, 6517-6524.

  22. Han, Guan-Qun, Liu, Yan-Ru, Hu, Wen-Hui, Dong, Bin, Li, Xiao, Shang, Xiao, Chai, Yong-Ming, Liu, Yun-Qi, Liu, Chen-Guang. Crystallographic Structure and Morphology Transformation of MnO2 Nanorods as Efficient Electrocatalysts for Oxygen Evolution Reaction. Journal of the Electrochemical Society : JES, vol.163, no.2, H67-H73.

  23. Peng, Zheng, Jia, Dingsi, Al‐Enizi, Abdullah M., Elzatahry, Ahmed A., Zheng, Gengfeng. From Water Oxidation to Reduction: Homologous Ni-Co Based Nanowires as Complementary Water Splitting Electrocatalysts. Advanced energy materials, vol.5, no.9, 1402031-.

  24. Yang, Yang, Fei, Huilong, Ruan, Gedeng, Xiang, Changsheng, Tour, James M.. Efficient Electrocatalytic Oxygen Evolution on Amorphous Nickel–Cobalt Binary Oxide Nanoporous Layers. ACS nano, vol.8, no.9, 9518-9523.

  25. Grimaud, Alexis, May, Kevin J., Carlton, Christopher E., Lee, Yueh-Lin, Risch, Marcel, Hong, Wesley T., Zhou, Jigang, Shao-Horn, Yang. Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nature communications, vol.4, 2439-.

  26. Zhang, Bo, Zheng, Xueli, Voznyy, Oleksandr, Comin, Riccardo, Bajdich, Michal, García-Melchor, Max, Han, Lili, Xu, Jixian, Liu, Min, Zheng, Lirong, García de Arquer, F. Pelayo, Dinh, Cao Thang, Fan, Fengjia, Yuan, Mingjian, Yassitepe, Emre, Chen, Ning, Regier, Tom, Liu, Pengfei, Li, Yuhang, De Luna, Phil, Janmohamed, Alyf, Xin, Huolin L., Yang, Huagui, Vojvodic, Aleksandra, Sargent, Edward H.. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science, vol.352, no.6283, 333-337.

  27. Hunter, Bryan M., Gray, Harry B., Müller, Astrid M.. Earth-Abundant Heterogeneous Water Oxidation Catalysts. Chemical reviews, vol.116, no.22, 14120-14136.

  28. Wang, Jiahai, Cui, Wei, Liu, Qian, Xing, Zhicai, Asiri, Abdullah M., Sun, Xuping. Recent Progress in Cobalt‐Based Heterogeneous Catalysts for Electrochemical Water Splitting. Advanced materials, vol.28, no.2, 215-230.

  29. Gong, Ming, Li, Yanguang, Wang, Hailiang, Liang, Yongye, Wu, Justin Z., Zhou, Jigang, Wang, Jian, Regier, Tom, Wei, Fei, Dai, Hongjie. An Advanced Ni–Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation. Journal of the American Chemical Society, vol.135, no.23, 8452-8455.

  30. Xiao, Hai, Shin, Hyeyoung, Goddard III, William A.. Synergy between Fe and Ni in the optimal performance of (Ni,Fe)OOH catalysts for the oxygen evolution reaction. Proceedings of the National Academy of Sciences of the United States of America, vol.115, no.23, 5872-5877.

  31. Fominykh, Ksenia, Chernev, Petko, Zaharieva, Ivelina, Sicklinger, Johannes, Stefanic, Goran, Döblinger, Markus, Müller, Alexander, Pokharel, Aneil, Böcklein, Sebastian, Scheu, Christina, Bein, Thomas, Fattakhova-Rohlfing, Dina. Iron-Doped Nickel Oxide Nanocrystals as Highly Efficient Electrocatalysts for Alkaline Water Splitting. ACS nano, vol.9, no.5, 5180-5188.

  32. Wang, Lingxiao, Geng, Jing, Wang, Wenhai, Yuan, Chao, Kuai, Long, Geng, Baoyou. Facile synthesis of Fe/Ni bimetallic oxide solid-solution nanoparticles with superior electrocatalytic activity for oxygen evolution reaction. Nano research, vol.8, no.12, 3815-3822.

  33. Lu, Zhiyi, Xu, Wenwen, Zhu, Wei, Yang, Qiu, Lei, Xiaodong, Liu, Junfeng, Li, Yaping, Sun, Xiaoming, Duan, Xue. Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chemical communications : Chem comm, vol.50, no.49, 6479-6482.

  34. Landon, James, Demeter, Ethan, İnoğlu, Nilay, Keturakis, Chris, Wachs, Israel E., Vasić, Relja, Frenkel, Anatoly I., Kitchin, John R.. Spectroscopic Characterization of Mixed Fe–Ni Oxide Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Electrolytes. ACS catalysis, vol.2, no.8, 1793-1801.

  35. Louie, Mary W., Bell, Alexis T.. An Investigation of Thin-Film Ni–Fe Oxide Catalysts for the Electrochemical Evolution of Oxygen. Journal of the American Chemical Society, vol.135, no.33, 12329-12337.

  36. Trotochaud, Lena, Young, Samantha L., Ranney, James K., Boettcher, Shannon W.. Nickel–Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation. Journal of the American Chemical Society, vol.136, no.18, 6744-6753.

  37. Dionigi, Fabio, Strasser, Peter. NiFe‐Based (Oxy)hydroxide Catalysts for Oxygen Evolution Reaction in Non‐Acidic Electrolytes. Advanced energy materials, vol.6, no.23, 1600621-.

  38. Trotochaud, Lena, Ranney, James K., Williams, Kerisha N., Boettcher, Shannon W.. Solution-Cast Metal Oxide Thin Film Electrocatalysts for Oxygen Evolution. Journal of the American Chemical Society, vol.134, no.41, 17253-17261.

  39. Liu, Youwen, Cheng, Hao, Lyu, Mengjie, Fan, Shaojuan, Liu, Qinghua, Zhang, Wenshuai, Zhi, Yuduo, Wang, Chengming, Xiao, Chong, Wei, Shiqiang, Ye, Bangjiao, Xie, Yi. Low Overpotential in Vacancy-Rich Ultrathin CoSe2 Nanosheets for Water Oxidation. Journal of the American Chemical Society, vol.136, no.44, 15670-15675.

  40. He, Qun, Wan, Yangyang, Jiang, Hongliang, Pan, Ziwen, Wu, Chuanqiang, Wang, Mei, Wu, Xiaojun, Ye, Bangjiao, Ajayan, Pulickel M., Song, Li. Nickel Vacancies Boost Reconstruction in Nickel Hydroxide Electrocatalyst. ACS energy letters, vol.3, 1373-1380.

  41. Xu, Lei, Jiang, Qianqian, Xiao, Zhaohui, Li, Xingyue, Huo, Jia, Wang, Shuangyin, Dai, Liming. Plasma‐Engraved Co3O4 Nanosheets with Oxygen Vacancies and High Surface Area for the Oxygen Evolution Reaction. Angewandte Chemie. international edition, vol.55, no.17, 5277-5281.

  42. Cai, Zhao, Bi, Yongmin, Hu, Enyuan, Liu, Wen, Dwarica, Nico, Tian, Yang, Li, Xiaolin, Kuang, Yun, Li, Yaping, Yang, Xiao‐Qing, Wang, Hailiang, Sun, Xiaoming. Single‐Crystalline Ultrathin Co3O4 Nanosheets with Massive Vacancy Defects for Enhanced Electrocatalysis. Advanced energy materials, vol.8, no.3, 1701694-.

  43. Zhang, Jun‐Jun, Wang, Hong‐Hui, Zhao, Tian‐Jian, Zhang, Ke‐Xin, Wei, Xiao, Jiang, Zhi‐Dong, Hirano, Shin‐Ichi, Li, Xin‐Hao, Chen, Jie‐Sheng. Oxygen Vacancy Engineering of Co3O4 Nanocrystals through Coupling with Metal Support for Water Oxidation. ChemSusChem, vol.10, no.14, 2875-2879.

  44. Methods of Soil Analysis. Part Kelly S. 387 5 2008 

  45. Kresse, G., Joubert, D.. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical review. B, Condensed matter and materials physics, vol.59, no.3, 1758-1775.

  46. Kresse, G., Furthmüller, J.. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational materials science, vol.6, no.1, 15-50.

  47. Perdew, John P., Burke, Kieron, Ernzerhof, Matthias. Generalized Gradient Approximation Made Simple. Physical review letters, vol.77, no.18, 3865-3868.

  48. Blöchl, P. E.. Projector augmented-wave method. Physical review. B, Condensed matter, vol.50, no.24, 17953-17979.

  49. Diaz-Morales, Oscar, Ledezma-Yanez, Isis, Koper, Marc T. M., Calle-Vallejo, Federico. Guidelines for the Rational Design of Ni-Based Double Hydroxide Electrocatalysts for the Oxygen Evolution Reaction. ACS catalysis, vol.5, no.9, 5380-5387.

  50. Friebel, Daniel, Louie, Mary W., Bajdich, Michal, Sanwald, Kai E., Cai, Yun, Wise, Anna M., Cheng, Mu-Jeng, Sokaras, Dimosthenis, Weng, Tsu-Chien, Alonso-Mori, Roberto, Davis, Ryan C., Bargar, John R., Nørskov, Jens K., Nilsson, Anders, Bell, Alexis T.. Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting. Journal of the American Chemical Society, vol.137, no.3, 1305-1313.

  51. J. Phys.: Condens. Matter Larsen A. H. 273002 29 2017 

  52. Norskov, J. K., Rossmeisl, J., Logadottir, A., Lindqvist, L., Kitchin, J. R., Bligaard, T., Jonsson, H.. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, vol.108, no.46, 17886-17892.

  53. Bandal, H.A., Jadhav, A.R., Chaugule, A.A., Chung, W.J., Kim, H.. Fe2O3 hollow nanorods/CNT composites as an efficient electrocatalyst for oxygen evolution reaction. Electrochimica acta, vol.222, 1316-1325.

  54. Gorlin, Yelena, Lassalle-Kaiser, Benedikt, Benck, Jesse D., Gul, Sheraz, Webb, Samuel M., Yachandra, Vittal K., Yano, Junko, Jaramillo, Thomas F.. In Situ X-ray Absorption Spectroscopy Investigation of a Bifunctional Manganese Oxide Catalyst with High Activity for Electrochemical Water Oxidation and Oxygen Reduction. Journal of the American Chemical Society, vol.135, no.23, 8525-8534.

  55. Wang, Hsin-Yi, Hung, Sung-Fu, Hsu, Ying-Ya, Zhang, Lulu, Miao, Jianwei, Chan, Ting-Shan, Xiong, Qihua, Liu, Bin. In Situ Spectroscopic Identification of μ-OO Bridging on Spinel Co3O4 Water Oxidation Electrocatalyst. The journal of physical chemistry letters, vol.7, no.23, 4847-4853.

  56. Jin, Kyoungsuk, Seo, Hongmin, Hayashi, Toru, Balamurugan, Mani, Jeong, Donghyuk, Go, Yoo Kyung, Hong, Jung Sug, Cho, Kang Hee, Kakizaki, Hirotaka, Bonnet-Mercier, Nadège, Kim, Min Gyu, Kim, Sun Hee, Nakamura, Ryuhei, Nam, Ki Tae. Mechanistic Investigation of Water Oxidation Catalyzed by Uniform, Assembled MnO Nanoparticles. Journal of the American Chemical Society, vol.139, no.6, 2277-2285.

  57. Chen, Jamie Y. C., Dang, Lianna, Liang, Hanfeng, Bi, Wenli, Gerken, James B., Jin, Song, Alp, E. Ercan, Stahl, Shannon S.. Operando Analysis of NiFe and Fe Oxyhydroxide Electrocatalysts for Water Oxidation: Detection of Fe4+ by Mössbauer Spectroscopy. Journal of the American Chemical Society, vol.137, no.48, 15090-15093.

  58. Goldsmith, Zachary K., Harshan, Aparna K., Gerken, James B., Voros, Márton, Galli, Giulia, Stahl, Shannon S., Hammes-Schiffer, Sharon. Characterization of NiFe oxyhydroxide electrocatalysts by integrated electronic structure calculations and spectroelectrochemistry. Proceedings of the National Academy of Sciences of the United States of America, vol.114, no.12, 3050-3055.

  59. Vračar, M., Kuzmin, A., Merkle, R., Purans, J., Kotomin, E. A., Maier, J., Mathon, O.. Jahn-Teller distortion aroundFe4+inSr(FexTi1−x)O3−δfrom x-ray absorption spectroscopy, x-ray diffraction, and vibrational spectroscopy. Physical review. B, Condensed matter and materials physics, vol.76, no.17, 174107-.

  60. Haas, O., Vogt, U.F., Soltmann, C., Braun, A., Yoon, W.S., Yang, X.Q., Graule, T.. The Fe K-edge X-ray absorption characteristics of La1-xSrxFeO3-δ; prepared by solid state reaction. Materials research bulletin, vol.44, no.6, 1397-1404.

  61. McBreen, J., O'Grady, W. E., Tourillon, G., Dartyge, E., Fontaine, A., Pandya, K. I.. In situ time-resolved x-ray absorption near edge structure study of the nickel oxide electrode. The Journal of physical chemistry, vol.93, no.17, 6308-6311.

  62. EXAFS: Basic Principles and Data Analysis Teo B. K. 9 2012 

  63. X-ray Absorption Fine Structure for Catalysts and Surfaces Iwasawa Y. 2 1996 10.1142/2807 

  64. Lengeler, B., Eisenberger, P.. Extended x-ray absorption fine structure analysis of interatomic distances, coordination numbers, and mean relative displacements in disordered alloys. Physical review. B, Condensed matter, vol.21, no.10, 4507-4520.

  65. O'Day, P. A., Rehr, J. J., Zabinsky, S. I., Brown, G. E. Jr.. Extended X-ray Absorption Fine Structure (EXAFS) Analysis of Disorder and Multiple-Scattering in Complex Crystalline Solids. Journal of the American Chemical Society, vol.116, no.7, 2938-2949.

  66. Bronsted, J. N.. Acid and Basic Catalysis.. Chemical reviews, vol.5, no.3, 231-338.

  67. Evans, M. G., Polanyi, M.. Inertia and driving force of chemical reactions. Transactions of the Faraday Society, vol.34, 11-24.

  68. Sanville, Edward, Kenny, Steven D., Smith, Roger, Henkelman, Graeme. Improved grid-based algorithm for Bader charge allocation. Journal of computational chemistry, vol.28, no.5, 899-908.

  69. Hammer, B., Norskov, J. K.. Why gold is the noblest of all the metals. Nature, vol.376, no.6537, 238-240.

  70. Hammer, B., Nørskov, J.K.. Electronic factors determining the reactivity of metal surfaces. Surface science, vol.343, no.3, 211-220.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로