$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Numerical investigation of the operating process of the liquid hydrogen tank under gaseous hydrogen pressurization

Aerospace science and technology, v.93, 2019년, pp.105327 -   

Li, Jiachao (School of Astronautics, Beihang University) ,  Liang, Guozhu (School of Astronautics, Beihang University) ,  Zhu, Pingping (Beijing Institute of Astronautical Systems Engineering) ,  Wang, Xi (Beijing Institute of Astronautical Systems Engineering)

Abstract AI-Helper 아이콘AI-Helper

Abstract In order to accurately predict the whole operating process of a liquid hydrogen tank under gaseous hydrogen pressurization, a 2-D axial symmetry Volume-of-Fluid (VOF) based numerical simulation method is established. Phase change and turbulence models are included in the numerical simulati...

주제어

참고문헌 (59)

  1. Olsen 1996 Experimental and Analytical Investigation of Interfacial Heat and Mass Transfer in a Pressurized Tank Containing Liquid Hydrogen 

  2. Dewitt 1966 Experimental Evaluation of Pressurant Gas Injectors During the Pressurized Discharge of Liquid Hydrogen 

  3. Adv. Cryog. Eng. Gluck 7 219 1962 Gas requirements in pressurized transfer of liquid hydrogen 

  4. Stochl 1969 Gaseous-Hydrogen Requirements for the Discharge of Liquid Hydrogen From a 1.52-Meter-(5-FT) Diameter Spherical Tank 

  5. Stochl 1969 Gaseous-Hydrogen Requirements for the Discharge of Liquid Hydrogen From a 3.96-Meter-(13-FT-) Diameter Spherical Tank 

  6. Stochl 1970 Gaseous-Helium Requirements for the Discharge of Liquid Hydrogen From a 1.52-Meter-(5-FT-) Diameter Spherical Tank 

  7. Ludwig 2012 Analyses of Cryogenic Propellant Tank Pressurization Based Upon Ground Experiments 

  8. Cryogenics Ludwig 63 1 2014 10.1016/j.cryogenics.2014.05.005 Investigations on thermodynamic phenomena of the active-pressurization process of a cryogenic propellant tank 

  9. Stewart 2017 Pressurization of a Flightweight, Liquid Hydrogen Tank: Evaporation & Condensation at the Liquid/Vapor Interface 

  10. Thompson 1965 Prediction of Propellant Tank Pressurization Requirements by Dimensional Analysis 

  11. Aerosp. Sci. Technol. Yang 82 83 161 2018 10.1016/j.ast.2018.09.008 Investigation on self-pressurization and ignition performance of nitrous oxide fuel blend ethylene thruster 

  12. Holt 2000 Numerical Modeling and Test Data Comparison of Propulsion Test Article Helium Pressurization Sys-Tem 

  13. J. Propuls. Power Majumdar 17 2 385 2001 10.2514/2.5754 Numerical modeling of pressurization of a propellant tank 

  14. Roudebush 1965 An Analysis of the Problem of Tank Pressurization During Outflow 

  15. Masters 1974 Computer Programs for Pressurization (RAMP) and Pressurized Expulsion From a Cryogenic Liquid Propellant Tank 

  16. J. Thermophys. Heat Transf. Daigle 27 1 116 2013 10.2514/1.T3933 Temperature stratification in a cryogenic fuel tank 

  17. J. Spacecr. Rockets Kwon 49 6 1150 2012 10.2514/1.A32073 Modeling the prediction of helium mass requirement for propellant tank pressurization 

  18. Aerosp. Sci. Technol. Torras 84 75 2019 10.1016/j.ast.2018.10.010 Multiphysics modeling and experimental validation of low temperature accumulator for cryogenic space propulsion systems 

  19. Hardy 1990 Prediction of the Ullage Gas Thermal Stratification in a NASP Vehicle Propellant Tank Experimental Simulation Using Flow-3D 

  20. Sasmal 1991 Computational Modeling of the Pressurization Process in a NASP Vehicle Propellant Tank Experi-Mental Simulation 

  21. Hirt 1988 Flow-3D User's Manual 

  22. Adnani 2000 Pressurization Analysis of Cryogenic Propulsion Systems 

  23. Adv. Cryog. Eng. Schmidt 487 1960 An experimental study concerning the pressurization and stratification of liquid hydrogen 

  24. Appl. Therm. Eng. Joseph 111 1629 2017 10.1016/j.applthermaleng.2016.07.015 Effect of insulation thickness on pressure evolution and thermal stratification in a cryogenic tank 

  25. Cryogenics Wang 57 63 2013 10.1016/j.cryogenics.2013.05.005 CFD investigation of thermal and pressurization performance in LH2 tank during discharge 

  26. Int. J. Heat Mass Transf. Wang 62 263 2013 10.1016/j.ijheatmasstransfer.2013.03.021 Transient thermal and pressurization performance of LO2 tank during helium pressurization combined with outside aerodynamic heating 

  27. Aerosp. Sci. Technol. Liu 85 544 2019 10.1016/j.ast.2019.01.005 Hydrodynamic performance in a sloshing liquid oxygen tank under different initial liquid filling levels 

  28. Microgravity Sci. Technol. Chen 25 4 203 2013 10.1007/s12217-013-9340-2 Simulation research of vaporization and pres-sure variation in a cryogenic propellant tank at the launch site 

  29. Yang 2015 CFD Extraction of Heat Transfer Coefficient in Cryogenic Propellant Tanks 

  30. J. Comput. Phys. Hirt 39 1 201 1981 10.1016/0021-9991(81)90145-5 Volume of fluid (VOF) method for the dynamics of free boundaries 

  31. Aerosp. Sci. Technol. Agarwal 32 1 60 2014 10.1016/j.ast.2013.12.001 Prediction of gas-core vortices during draining of liquid propellants from tanks 

  32. J. Beijing Univ. Aeronaut. Astronaut. Li 44 1 99 2018 Experiment and numerical simulation of liquid nitrogen tank atmospheric ground parking 

  33. J. Astronaut. Li 39 4 426 2018 Experiment and numerical simulation of liquid nitrogen tank self-pressurization 

  34. J. Fluid Mech. Panzarella 484 41 2003 10.1017/S0022112003004002 On the validity of purely thermodynamic descriptions of two-phase cryogenic fluid storage 

  35. J. Sci. Comput. Yakhot 1 1 3 1986 10.1007/BF01061452 Renormalization group analysis of turbulence. I. Basic theory 

  36. Int. J. Heat Mass Transf. Henkes 2 34 377 1991 10.1016/0017-9310(91)90258-G Natural convection flow in a square cavity calculated with low-Reynolds-number turbulence models 

  37. Chem. Rev. Persad 116 14 7727 2016 10.1021/acs.chemrev.5b00511 Expressions for the evaporation and condensation coefficients in the Hertz-Knudsen relation 

  38. Chem. Rev. Davidovits 106 4 1323 2006 10.1021/cr040366k Mass accommodation and chemical reactions at gas-liquid interfaces 

  39. Aerosol Sci. Technol. Mozurkewich 5 2 223 1986 10.1080/02786828608959089 Aerosol growth and the condensation coefficient for water: a review 

  40. Knudsen 1934 The Kinetic Theory of Gases: Some Modern Aspects 

  41. Schrage 1953 A Theoretical Study of Interphase Mass Transfer 

  42. Ann. Phys. Hertz 253 10 177 1882 10.1002/andp.18822531002 Ueber die verdunstung der flussigkeiten, insbesondere des quecksilbers, im luftleeren raume 

  43. J. Colloid Interface Sci. Barrett 150 2 352 1992 10.1016/0021-9797(92)90205-Z Kinetic evaporation and condensation rates and their coefficients 

  44. Int. J. Heat Mass Transf. Labuntsov 22 7 989 1979 10.1016/0017-9310(79)90172-8 Analysis of intensive evaporation and condensation 

  45. Haynes 2010 CRC Handbook of Chemistry and Physics 

  46. Lee 407 1980 Multiphase Transport: Fundamentals, Reactor Safety, Applications A pressure iteration scheme for two-phase flow modeling 

  47. Comput. Chem. Eng. Schepper 33 1 122 2009 10.1016/j.compchemeng.2008.07.013 Modeling the evaporation of a hydrocarbon feedstock in the convection section of a steam cracker 

  48. Int. J. Heat Mass Transf. Kryukov 54 13-14 3042 2011 10.1016/j.ijheatmasstransfer.2011.02.042 About evaporation-condensation coefficients on the vapor-liquid interface of high thermal conductivity matters 

  49. Alberts 2016 Numerical Approach to Measure Accommodation Coefficients for Long-Duration Spaceflight Cryogenic Propellants 

  50. Int. J. Heat Mass Transf. Wu 50 5-6 1186 2007 10.1016/j.ijheatmasstransfer.2006.10.013 Simulation of refrigerant flow boiling in serpentine tubes 

  51. Appl. Therm. Eng. Liu 112 801 2017 10.1016/j.applthermaleng.2016.10.124 Thermodynamic performance of pre-pressurization in a cryogenic tank 

  52. Wang vol. 1 36 2018 Computational research on phase change model for cryogenic propellant in microgravity 

  53. Adv. Heat Transf. Tanasawa 21 55 1991 10.1016/S0065-2717(08)70334-4 Advances in condensation heat transfer 

  54. Asia-Pac. J. Chem. Eng. Wang 9 1 63 2014 10.1002/apj.1746 Numerical investigation of pressurization performance in cryogenic tanks of new-style launch vehicle 

  55. Chin. J. Aeronaut. Li 2019 10.1016/j.cja.2019.05.008 Simulation of the mass and heat transfer in liquid hydrogen tanks during pressurization 

  56. NIST Chemistry WebBook, NIST standard reference database, October 2011 release, available from: http://webbook.nist.gov/chemistry/. 

  57. Dresar 1993 Pressurization and Expulsion of a Flight Weight Liquid Hydrogen Tank 

  58. Zilliac 2005 Modeling of Propellant Tank Pressurization 

  59. Int. Adv. Cryogenic Eng. Clark 10 259 1964 A review of pressurization, stratification and interfacial phenomena 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로