$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Expected margin–based pattern selection for support vector machines

Expert systems with applications, v.139, 2020년, pp.112865 -   

Kim, Dongil (Department of Computer Science & Engineering, Chungnam National University) ,  Kang, Seokho (Corresponding author.) ,  Cho, Sungzoon (Department of Industrial Engineering & Institute for Industrial Systems Innovation, Seoul National University)

Abstract AI-Helper 아이콘AI-Helper

Abstract Support Vector Machines (SVMs) are amongst the most powerful classification algorithms in machine learning and data mining. However, SVMs are limited by high training complexity when training with large datasets. Pattern selection methods have been proposed to reduce the training complexit...

Keyword

참고문헌 (36)

  1. Almeida 162 2000 Proceedings of the 6th brazilian symposium on neural networks SVM-KM: Speeding SVMs learning with a priori cluster selection and k-means 

  2. IEEE Transactions on Semiconductor Manufacturing Baly 25 3 373 2012 10.1109/TSM.2012.2196058 Wafer classification using support vector machines 

  3. Besnard 2006 Proceedings of the 3rd ismi symposium on manufacturing effectiveness Wafer-to-wafer virtual metrology applied to run-to-run control 

  4. Expert Systems with Applications Bosch 40 10 4029 2013 10.1016/j.eswa.2013.01.006 Support vector machine under uncertainty: An application for hydroacoustic classification of fish-schools in Chile 

  5. Data Mining and Knowledge Discovery Burges 2 121 1998 10.1023/A:1009715923555 A tutorial on support vector machines for pattern recognition 

  6. ACM Transactions on Intelligent Systems and Technology Chang 2 3 27 2011 10.1145/1961189.1961199 LIBSVM: A library for support vector machines 

  7. Pattern Recognition Letters Guo 28 2173 2007 10.1016/j.patrec.2007.04.017 Reducing examples to accelerate support vector regression 

  8. Pattern Recognition Letters Guo 51 112 2015 10.1016/j.patrec.2014.08.003 Fast data selection for SVM training using ensemble margin 

  9. Neurocomputing He 74 10 1585 2011 10.1016/j.neucom.2011.01.019 Neighborhood based sample and feature selection for SVM classification learning 

  10. Hsieh 408 2008 Proceedings of the 2008 international conference on machine learning A dual coordinate descent method for large-scale linear SVM 

  11. Applied Soft Computing Jedliski 30 636 2015 10.1016/j.asoc.2015.02.015 Early fault detection in gearboxes based on support vector machines and multilayer perceptron with a continuous wavelet transform 

  12. Joachims 1998 Technical Report Making large-scale SVM learning practical 

  13. Expert Systems with Applications Kang 51 85 2016 10.1016/j.eswa.2015.12.027 Semi-supervised support vector regression based on self-training with label uncertainty: An application to virtual metrology in semiconductor manufacturing 

  14. Expert Systems with Applications Kang 38 3 2508 2011 10.1016/j.eswa.2010.08.040 Virtual metrology for run-to-run control in semiconductor manufacturing 

  15. Lecture Notes in Computer Science Kawulok 7626 557 2012 10.1007/978-3-642-34166-3_61 Support vector machines training data selection using a genetic algorithm 

  16. Expert Systems with Applications Kim 39 10 8975 2012 10.1016/j.eswa.2012.02.026 Pattern selection for support vector regression based response modeling 

  17. Expert Systems with Applications Kim 39 4 4075 2012 10.1016/j.eswa.2011.09.088 Machine learning-based novelty detection for faulty wafer detection in semiconductor manufacturing 

  18. IEEE Transactions on Pattern Analysis and Machine Intelligence Li 33 6 1189 2011 10.1109/TPAMI.2010.188 Selecting critical patterns based on local geometrical and statistical information 

  19. Applied Soft Computing Maldonado 25 740 2015 10.1016/j.asoc.2015.05.058 Profit-based feature selection using support vector machines - general framework and an application for customer retention 

  20. IEEE Transactions on Neural Networks Mangasarian 10 5 1032 1999 10.1109/72.788643 Successive overrelaxation for support vector machines 

  21. Pattern Recognition Maulik 44 3 615 2011 10.1016/j.patcog.2010.09.021 A self-trained ensemble with semisupervised SVM: An application to pixel classification of remote sensing imagery 

  22. Nghi 28 2011 Proceedings of the international conference on information and electronics engineering Training data selection for support vector machines model 

  23. Omega Pai 39 6 497 2005 10.1016/j.omega.2004.07.024 A hybrid ARIMA and support vector machines model in stock price forecasting 

  24. Platt 41 1998 Advances in kernel methods - Support Vector Learning Fast training of support vector machines using sequential minimal optimization 

  25. Information Sciences Ramirez 237 59 2013 10.1016/j.ins.2009.05.012 Computer-aided diagnosis of alzheimer’s type dementia combining support vector machines and discriminant set of features 

  26. Mathematical Programming Shalev-Shwartz 127 1 3 2011 10.1007/s10107-010-0420-4 Pegasos: Primal estimated sub-gradient solver for SVM 

  27. Expert Systems with Applications Shin 30 4 746 2006 10.1016/j.eswa.2005.07.037 Response modeling with support vector machines 

  28. Neural Computation Shin 19 3 816 2007 10.1162/neco.2007.19.3.816 Neighborhood property based pattern selection for support vector machines 

  29. Statistics and Computing Smola 14 3 199 2004 10.1023/B:STCO.0000035301.49549.88 A tutorial on support vector regression 

  30. Sun 559 2006 Proceedings of 2006 ieee international joint conference on neural networks Pattern selection for support vector regression based on sparsity and variability 

  31. Vapnik 1995 The nature of statistical learning theory 

  32. Vapnik 2006 Estimation of dependences based on empirical data 

  33. Lecture Notes in Computer Science Wang 3610 554 2005 10.1007/11539087_71 Training data selection for support vector machines 

  34. Information Sciences Wang 402 50 2017 10.1016/j.ins.2017.03.027 Remote sensing image classification based on the optimal support vector machine and modified binary coded ant colony optimization algorithm 

  35. Neurocomputing Wang 61 259 2004 10.1016/j.neucom.2003.11.012 A heuristic training for support vector regression 

  36. Applied Soft Computing Zhang 49 385 2016 10.1016/j.asoc.2016.08.026 Stock trend prediction based on new status box method and adaboost probabilistic support vector machine 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로