$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Hydrogen Fuel Cell Vehicles; Current Status and Future Prospect 원문보기

Applied sciences, v.9 no.11, 2019년, pp.2296 -   

Manoharan, Yogesh (Combustion and Sustainable Energy Laboratory (ComSEL), Department of Mechanical Engineering, Arkansas Tech University, 1811 N Boulder Ave, Russellville, AR 72801, USA) ,  Hosseini, Seyed Ehsan (Combustion and Sustainable Energy Laboratory (ComSEL), Department of Mechanical Engineering, Arkansas Tech University, 1811 N Boulder Ave, Russellville, AR 72801, USA) ,  Butler, Brayden (Combustion and Sustainable Energy Laboratory (ComSEL), Department of Mechanical Engineering, Arkansas Tech University, 1811 N Boulder Ave, Russellville, AR 72801, USA) ,  Alzhahrani, Hisham (Combustion and Sustainable Energy Laboratory (ComSEL), Department of Mechanical Engineering, Arkansas Tech University, 1811 N Boulder Ave, Russellville, AR 72801, USA) ,  Senior, Bhi Thi Fou (Combustion and Sustainable Energy Laboratory (ComSEL), Department of Mechanical Engineering, Arkansas Tech University, 1811 N Boulder Ave, Russellville, AR 72801, USA) ,  Ashuri, Turaj (Combustion and Sustainable Energy Laboratory (ComSEL), Department of Mechanical Engineering, Arkansas Tech University, 1811 N Boulder Ave, Russellville, AR) ,  Krohn, John

Abstract AI-Helper 아이콘AI-Helper

The hazardous effects of pollutants from conventional fuel vehicles have caused the scientific world to move towards environmentally friendly energy sources. Though we have various renewable energy sources, the perfect one to use as an energy source for vehicles is hydrogen. Like electricity, hydrog...

참고문헌 (89)

  1. Hosseini A review on green energy potentials in Iran Renew. Sustain. Energy Rev. 2013 10.1016/j.rser.2013.07.015 27 533 

  2. Granovskii Greenhouse gas emissions reduction by use of wind and solar energies for hydrogen and electricity production: Economic factors Int. J. Hydrogen Energy 2007 10.1016/j.ijhydene.2006.09.029 32 927 

  3. 10.3390/app8122449 Derbeli, M., Barambones, O., Sbita, L., Derbeli, M., Barambones, O., and Sbita, L. (2018). A Robust Maximum Power Point Tracking Control Method for a PEM Fuel Cell Power System. Appl. Sci., 8. 

  4. Hosseini The scenario of greenhouse gases reduction in Malaysia Renew. Sustain. Energy Rev. 2013 10.1016/j.rser.2013.08.045 28 400 

  5. Eriksson Optimization and integration of hybrid renewable energy hydrogen fuel cell energy systems-A critical review Appl. Energy 2017 10.1016/j.apenergy.2017.03.132 202 348 

  6. Heywood, J.B. (1988). Internal Combustion Engine Fundamentals, McGraw-Hill Education. 

  7. 10.3390/app8122404 Costilla-Reyes, A., Erbay, C., Carreon-Bautista, S., Han, A., and Sánchez-Sinencio, E. (2018). A Time-Interleave-Based Power Management System with Maximum Power Extraction and Health Protection Algorithm for Multiple Microbial Fuel Cells for Internet of Things Smart Nodes. Appl. Sci., 8. 

  8. 10.3390/app8122474 Kerviel, A., Pesyridis, A., Mohammed, A., Chalet, D., Kerviel, A., Pesyridis, A., Mohammed, A., and Chalet, D. (2018). An Evaluation of Turbocharging and Supercharging Options for High-Efficiency Fuel Cell Electric Vehicles. Appl. Sci., 8. 

  9. Wang Control of PEM Fuel Cell Distributed Generation Systems IEEE Trans. Energy Convers. 2006 10.1109/TEC.2005.860404 21 586 

  10. Somekawa Examination of a high-efficiency solid oxide fuel cell system that reuses exhaust gas Appl. Therm. Eng. 2017 10.1016/j.applthermaleng.2016.10.096 114 1387 

  11. Ayad Vehicle hybridization with fuel cell, supercapacitors and batteries by sliding mode control Renew. Energy 2011 10.1016/j.renene.2010.06.012 36 2627 

  12. 10.3390/app9061066 Chakraborty, U.K. (2019). A New Model for Constant Fuel Utilization and Constant Fuel Flow in Fuel Cells. Appl. Sci., 9. 

  13. Giorgi Fuel Cells: Technologies and Applications Open Fuel Cells J. 2013 10.2174/1875932720130719001 6 1 

  14. Offer Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system Energy Policy 2010 10.1016/j.enpol.2009.08.040 38 24 

  15. Choi Effect of electricity generation mix on battery electric vehicle adoption and its environmental impact Energy Policy 2018 10.1016/j.enpol.2018.06.013 121 13 

  16. Aceves, S.M., Berry, G.D., Weisberg, A.H., Espinosa-Loza, F., and Perfect, S.A. (2006, January 13-16). Advanced concepts for vehicular containment of compressed and cryogenic hydrogen. Proceedings of the 16th World Hydrogen Energy Conference 2006 (WHEC 2006), Lyon, France. 

  17. Michel, F., Fieseler, H., and Allidiers, L. (2006, January 13-16). Liquid Hydrogen Technologies for Mobile Use. Proceedings of the 16th World Hydrogen Energy Conference 2006 (WHEC 2006), Lyon, France. 

  18. Paggiaro Cryo-adsorptive hydrogen storage on activated carbon. II: Investigation of the thermal effects during filling at cryogenic temperatures Int. J. Hydrogen Energy 2010 10.1016/j.ijhydene.2009.11.013 35 648 

  19. 10.1016/j.rser.2015.12.112 Hosseini, S.E., and Wahid, M.A. (2016). Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renew. Sustain. Energy Rev., 57. 

  20. Boretti Novel dual fuel diesel-ammonia combustion system in advanced TDI engines Int. J. Hydrogen Energy 2017 10.1016/j.ijhydene.2016.11.208 42 7071 

  21. Veziroglu Fuel cell vehicles: State of the art with economic and environmental concerns Int. J. Hydrogen Energy 2011 10.1016/j.ijhydene.2010.08.145 36 25 

  22. Hosseini An overview of renewable hydrogen production from thermochemical process of oil palm solid waste in Malaysia Energy Convers. Manag. 2015 10.1016/j.enconman.2015.02.012 94 415 

  23. Hosseini A review on biomass-based hydrogen production for renewable energy supply Int. J. Energy Res. 2015 10.1002/er.3381 39 1597 

  24. Hibino Efficient Hydrogen Production by Direct Electrolysis of Waste Biomass at Intermediate Temperatures ACS Sustain. Chem. Eng. 2018 10.1021/acssuschemeng.8b01701 6 9360 

  25. Hibino An Intermediate-Temperature Biomass Fuel Cell Using Wood Sawdust and Pulp Directly as Fuel J. Electrochem. Soc. 2017 10.1149/2.0511706jes 164 F557 

  26. Hibino Applied Catalysis B: Environmental Direct electrolysis of waste newspaper for sustainable hydrogen production: An oxygen-functionalized porous carbon anode Appl. Catal. B Environ. 2018 10.1016/j.apcatb.2018.03.021 231 191 

  27. Hibino Hydrogen Production by Direct Lignin Electrolysis at Intermediate Temperatures ChemElectroChem 2017 10.1002/celc.201700917 4 3032 

  28. Hori Electrolysis of humidified methane to hydrogen and carbon dioxide at low temperatures and voltages Int. J. Hydrogen Energy 2019 10.1016/j.ijhydene.2018.12.044 44 2454 

  29. (2019, May 21). Alternative Fuels Data Center: How Do Fuel Cell Electric Vehicles Work Using Hydrogen?, Available online: https://afdc.energy.gov/vehicles/how-do-fuel-cell-electric-cars-work. 

  30. Devrim Development of 500 W PEM fuel cell stack for portable power generators Int. J. Hydrogen Energy 2015 10.1016/j.ijhydene.2015.02.005 40 7707 

  31. Davis, C., Edelstein, B., Evenson, B., Brecher, A., and Cox, D. (2003, January 12). Hydrogen Fuel Cell Vehicle Study. Presented at the Panel on Public Affairs (POPA), American Physical Society. 

  32. Atkinson Carbon nanostructures: An efficient hydrogen storage medium for fuel cells Fuel Cells Bull. 2001 10.1016/S1464-2859(01)80733-1 4 9 

  33. 10.1016/B978-1-78242-363-8.00007-4 Das, L.M. (2016). Hydrogen-fueled internal combustion engines. Compend. Hydrog. Energy, 177-217. 

  34. Chen Interaction of hydrogen with metal nitrides and imides Nature 2002 10.1038/nature01210 420 302 

  35. 10.1201/9781420054002 Ehsani, M., Gao, Y., Longo, S., and Ebrahimi, K. (2018). Modern Electric, Hybrid Electric, and Fuel Cell Vehicles, Third Edition, CRC Press. 

  36. Jorgensen Hydrogen storage tanks for vehicles: Recent progress and current status Curr. Opin. Solid State Mater. Sci. 2011 10.1016/j.cossms.2010.09.004 15 39 

  37. Greene, D.L., Leiby, P.N., James, B.D., Perez, J., Melandez, M., Milbrandt, A., Unnasch, S., and Rutherford, D. (2008). Analysis of the Transition to Hydrogen Fuel Cell Vehicles and the Potential Hydrogen Energy Infrastructure Requirements, Oak Ridge National Lab. (ORNL). 

  38. Kirubakaran The PEM Fuel Cell System with DC / DC Boost Converter: Design, Modeling and Simulation Int. J. Recent Trends Eng. 2009 1 157 

  39. 10.1002/9781119191766 O’Hayre, R.P., Cha, S.-W., Colella, W.G., and Prinz, F.B. (2016). Fuel Cell Fundamentals, John Wiley & Sons. 

  40. Reschiotto, D. (2018). Effects of Anode Fuel Recirculation on SOFCs Fuelled with Biogas. [Master’s Thesis, Politecnico di Torino]. 

  41. 10.3390/app9051030 Yang, G., Jung, W., Ahn, S.-J., Lee, D., Yang, G., Jung, W., Ahn, S.-J., and Lee, D. (2019). Controlling the Oxygen Electrocatalysis on Perovskite and Layered Oxide Thin Films for Solid Oxide Fuel Cell Cathodes. Appl. Sci., 9. 

  42. (2018, October 16). NFCRC Tutorial: Solid Oxide Fuel Cell (SOFC). Available online: http://www.nfcrc.uci.edu/3/TUTORIALS/EnergyTutorial/sofc.html. 

  43. Barbir, F. (2013). PEM Fuel Cells: Theory and Practice, Academic Press. [2nd ed.]. 

  44. Yamarone, R. (2004). The Trader’s Guide to Key Economic Indicators, Bloomberg Press. 

  45. Srinivasan, S. (2006). Fuel cells: From fundamentals to applications. Fuel Cells, Springer Science & Business Media. 

  46. Wilberforce Developments of electric cars and fuel cell hydrogen electric cars Int. J. Hydrogen Energy 2017 10.1016/j.ijhydene.2017.07.054 42 25695 

  47. 10.5772/18634 Briguglio, N., Andaloro, L., Ferraro, M., and Antonucci, V. (2011). Fuel Cell Hybrid Electric Vehicles. Electric Vehicles, The Benefits and Barriers, InTech. 

  48. Garche Applications of Fuel Cell Technology: Status and Perspectives Electrochem. Soc. Interface 2015 10.1149/2.F02152if 24 39 

  49. Bhosale Modeling and experimental validation of a unitized regenerative fuel cell in electrolysis mode of operation Energy 2017 10.1016/j.energy.2017.01.031 121 256 

  50. Zhang A novel bifunctional electrocatalyst for unitized regenerative fuel cell J. Power Sources 2010 10.1016/j.jpowsour.2009.07.018 195 142 

  51. Ito ScienceDirect Efficiency of unitized reversible fuel cell systems Int. J. Hydrogen Energy 2016 10.1016/j.ijhydene.2016.01.150 41 5803 

  52. Shukla The Promise of Fuel Cell-Based Automobiles Bull. Mater. Sci. 2003 10.1007/BF02707792 26 207 

  53. Stefan, J., Minott, S.J., Norman, R., and Scott, N.R. (1, January July). Feasibility of Fuel Cells for Energy Conversion on Dairy Farms. Proceedings of the ASABE Annual Meeting, Sacramento, CA, USA. 

  54. Chu Opportunities and challenges for a sustainable energy future Nature 2012 10.1038/nature11475 488 294 

  55. Mahmoud Electric buses: A review of alternative powertrains Renew. Sustain. Energy Rev. 2016 10.1016/j.rser.2016.05.019 62 673 

  56. Hardman Who are the early adopters of fuel cell vehicles? Int. J. Hydrogen Energy 2018 10.1016/j.ijhydene.2018.08.006 43 17857 

  57. Schwelm Hydrogenics fueling installations in Germany, France Fuel Cells Bull. 2009 2009 7 

  58. Robledo Integrating a hydrogen fuel cell electric vehicle with vehicle-to-grid technology, photovoltaic power and a residential building Appl. Energy 2018 10.1016/j.apenergy.2018.02.038 215 615 

  59. (2017, January 20). International Energy Agency. Available online: http://www.iea.org/. 

  60. Arena, F., Spera, D., and Laguardia, F. What’s in the Future for Fuel Cell Vehicles?. Arthur D Little. 

  61. Bode What governs the transition to a sustainable hydrogen economy? Articulating the relationship between technologies and political institutions Energy Policy 2006 10.1016/j.enpol.2005.12.005 34 1227 

  62. Brey Exploring the marketability of fuel cell electric vehicles in terms of infrastructure and hydrogen costs in Spain Renew. Sustain. Energy Rev. 2018 10.1016/j.rser.2017.10.042 82 2893 

  63. Thomas Fuel cell and battery electric vehicles compared Int. J. Hydrogen Energy 2009 10.1016/j.ijhydene.2009.06.003 34 6005 

  64. Barbosa Acetate as a carbon source for hydrogen production by photosynthetic bacteria J. Biotechnol. 2001 10.1016/S0168-1656(00)00368-0 85 25 

  65. Emadi Topological Overview of Hybrid Electric and Fuel Cell Vehicular Power System Architectures and Configurations IEEE Trans. Veh. Technol. 2005 10.1109/TVT.2005.847445 54 763 

  66. 10.1109/NAFIPS.2007.383852 Liu, Y.-L., Tong, C.-C., Jwo, W.-S., and Lin, S.-J. (2007). Design an Intelligent Neural-Fuzzy Controller for Hybrid Motorcycle. NAFIPS 2007. 2007 Annual Meeting of the North American Fuzzy Information Processing Society, IEEE. 

  67. Ahn Analysis of a regenerative braking system for Hybrid Electric Vehicles using an Electro-Mechanical Brake Int. J. Automot. Technol. 2009 10.1007/s12239-009-0027-z 10 229 

  68. 10.4271/1999-01-2910 Gao, Y., Chen, L., and Ehsani, M. (1999). Investigation of the Effectiveness of Regenerative Braking for EV and HEV. SAE Techical Paper, SAE International. 

  69. 10.1016/B978-0-444-53565-8.00018-X Arora, A., Medora, N.K., Livernois, T., and Swart, J. (2010). Safety of Lithium-Ion Batteries for Hybrid Electric Vehicles. Electr. Hybrid Veh., 463-491. 

  70. Walters Comparative Study of Hybrid Powertrain Strategies SAE Trans. 2001 110 1944 

  71. Hogarth Dynamics of Autohumidifed PEM Fuel Cell Operation J. Electrochem. Soc. 2006 10.1149/1.2344841 153 A2139 

  72. Hasan Simulation of a proton exchange membrane fuel cell World J. Eng. 2011 10.1260/1708-5284.8.2.109 8 109 

  73. Guarnieri A novel circuit model of a proton exchange membrane fuel cell COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 2010 10.1108/03321641011078634 29 1562 

  74. Kato Molecular dynamics simulation of oxygen transport characteristics in the electrolyte membrane of PEMFC Int. J. Numer. Methods Heat Fluid Flow 2018 10.1108/HFF-10-2016-0430 28 289 

  75. Electrochemical Society (1948). Journal of the Electrochemical Society, Electrochemical Society. 

  76. 10.1109/VPPC.2010.5729045 Grammatico, S., Balluchi, A., and Italia, D. (2010). A series-parallel hybrid electric powertrain for industrial vehicles. Proceedings of the Automotive Control View Project, IEEE. 

  77. Amodeo High-performance sensorless nonlinear power control of a flywheel energy storage system Energy Convers. Manag. 2009 10.1016/j.enconman.2009.03.024 50 1722 

  78. Xiong Optimal energy management for a series-parallel hybrid electric bus Energy Convers. Manag. 2009 10.1016/j.enconman.2009.03.015 50 1730 

  79. Hu Energy efficiency analysis of a series plug-in hybrid electric bus with different energy management strategies and battery sizes Appl. Energy 2013 10.1016/j.apenergy.2013.06.056 111 1001 

  80. He Review of hybrid electric systems for construction machinery Autom. Constr. 2018 10.1016/j.autcon.2018.04.005 92 286 

  81. Dreier Well-to-Wheel analysis of fossil energy use and greenhouse gas emissions for conventional, hybrid-electric and plug-in hybrid-electric city buses in the BRT system in Curitiba, Brazil Transp. Res. Part D Transp. Environ. 2018 10.1016/j.trd.2017.10.015 58 122 

  82. Camara Design and New Control of DC/DC Converters to Share Energy Between Supercapacitors and Batteries in Hybrid Vehicles IEEE Trans. Veh. Technol. 2008 10.1109/TVT.2008.915491 57 2721 

  83. Bauman An Analytical Optimization Method for Improved Fuel Cell-Battery-Ultracapacitor Powertrain IEEE Trans. Veh. Technol. 2009 10.1109/TVT.2009.2014843 58 3186 

  84. Bauman A Comparative Study of Fuel-Cell-Battery, Fuel-Cell-Ultracapacitor, and Fuel-Cell-Battery-Ultracapacitor Vehicles IEEE Trans. Veh. Technol. 2008 10.1109/TVT.2007.906379 57 760 

  85. Thounthong Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle applications J. Power Sources 2009 10.1016/j.jpowsour.2008.12.120 193 376 

  86. Cipollone Model based Design and Optimization of a Fuel Cell Electric Vehicle Energy Procedia 2014 10.1016/j.egypro.2014.01.009 45 71 

  87. Ning Modeling and control strategy development for fuel cell hybrid vehicles Int. J. Automot. Technol. 2010 10.1007/s12239-010-0029-x 11 229 

  88. Bizon Fuel economy using the global optimization of the Fuel Cell Hybrid Power Systems Energy Convers. Manag. 2018 10.1016/j.enconman.2018.08.015 173 665 

  89. Gao Power Enhancement of an Actively Controlled Battery/Ultracapacitor Hybrid IEEE Trans. Power Electron. 2005 10.1109/TPEL.2004.839784 20 236 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로