$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Graphene and Graphene-Based Nanomaterials for DNA Detection: A Review 원문보기

Molecules a journal of synthetic chemistry and natural product chemistry, v.23 no.8, 2018년, pp.2050 -   

Wu, Xin (George S. Ansell Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO 80401, USA) ,  Mu, Fengwen (Department of Precision Engineering, The University of Tokyo, Tokyo 113-8656, Japan) ,  Wang, Yinghui (Kunshan Branch, Institute of Microelectronics, Chinese Academy of Sciences, Suzhou 215347, China) ,  Zhao, Haiyan (wangyinghui@ime.ac.cn)

Abstract AI-Helper 아이콘AI-Helper

DNA detection with high sensitivity and specificity has tremendous potential as molecular diagnostic agents. Graphene and graphene-based nanomaterials, such as graphene nanopore, graphene nanoribbon, graphene oxide, and reduced graphene oxide, graphene-nanoparticle composites, were demonstrated to h...

Keyword

참고문헌 (163)

  1. 1. Hayden C.E. Technology: The $1000 genome Nature 2014 507 294 295 10.1038/507294a 24646979 

  2. 2. Gebala M. Hartwich G. Schuhmann W. Amplified detection of DNA hybridization using post-labelling with a biotin-modified intercalator Faraday Discuss. 2011 149 11 22 10.1039/C005365A 21413171 

  3. 3. Jambrec D. Lammers K. Bobrowski T. Pӧller S. Schuhmann W. Ruff A. Amperometric Detection of dsDNA Using an Acridine-Orange-Modified Glucose Oxidase ChemPlusChem 2017 82 1311 1314 10.1002/cplu.201700279 

  4. 4. He P. Xu Y. Fang Y. A Review: Electrochemical DNA Biosensors for Sequence Recognition Anal. Lett. 2005 38 2597 2623 10.1080/00032710500369794 

  5. 5. Odenthal K.J. Gooding J.J. An introduction to electrochemical DNA biosensors Analyst 2007 132 603 610 10.1039/b701816a 17592577 

  6. 6. Cagnin S. Caraballo M. Guiducci C. Martini P. Ross M. Santaana M. Danley D. West T. Lanfranchi G. Overview of Electrochemical DNA Biosensors: New Approaches to Detect the Expression of Life Sensors 2009 9 3122 3148 22574066 

  7. 7. Sohn L.L. On the road toward electronic biosensors Proceedings of the First Joint BMES/EMBS Conference Atlanta, GA, USA 13–16 October 1999 1338 

  8. 8. Peng H.I. Miller B.L. Recent advancements in optical DNA biosensors: Exploiting the plasmonic effects of metal nanoparticles Analyst 2011 136 436 447 21049107 

  9. 9. Lord H. Kelley S.O. Nanomaterials for ultrasensitive electrochemical nucleic acids biosensing J. Mater. Chem. 2009 19 3127 3134 10.1039/b814569e 

  10. 10. Pandey P. Datta M. Malhotra B.D. Prospects of Nanomaterials in Biosensors Anal. Lett. 2008 41 159 209 10.1080/00032710701792620 

  11. 11. Mao X. Liu G.D. Nanomaterial based electrochemical DNA biosensors and bioassays J. Biomed. Nanotechnol. 2008 4 419 431 10.1166/jbn.2008.005 

  12. 12. Xu K. Huang J.R. Ye Z.Z. Ying Y.B. Li Y.B. Recent Development of Nano-Materials Used in DNA Biosensors Sensors 2009 9 5534 5557 22346713 

  13. 13. Zhang Y.B. Tan Y.W. Stormer H.L. Kim P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene Nature 2005 438 201 204 10.1038/nature04235 16281031 

  14. 14. Frank I.W. Tanenbaum D.M. Mechanical properties of suspended graphene sheets J. Vac. Sci. Technol. B 2007 25 2558 2561 10.1116/1.2789446 

  15. 15. Lee C. Wei X. Kysar J.W. Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene Science 2008 321 385 388 10.1126/science.1157996 18635798 

  16. 16. Castro Neto A. Guinea F. Peres N. Novoselov K. Geim A. The electronic properties of graphene Rev. Mod. Phys. 2009 81 109 

  17. 17. Balandin A.A. Ghosh S. Bao W.Z. Calizo I. Teweldebrhan D. Miao F. Lau C.N. Superior thermal conductivity of single-layer Graphene Nano Lett. 2008 8 902 907 10.1021/nl0731872 18284217 

  18. 18. Wang F. Zhang Y. Tian C. Girit C. Crommie A. Shen Y.R. Gate-variable optical transitions in graphene Science 2008 320 206 209 10.1126/science.1152793 18339901 

  19. 19. Schniepp H.C. Li J.L. McAllister M.J. Sai H. Alonso M.H. Adamson D.H. Prudhomme R.K. Car R. Saville D.A. Aksay I.A. Functionalized single graphene sheets derived from splitting graphite oxide J. Phys. Chem. B 2006 110 8535 8539 10.1021/jp060936f 16640401 

  20. 20. Allen M.J. Tung V.C. Kaner R.B. Honeycomb carbon: A review of graphene Chem. Rev. 2010 110 132 145 10.1021/cr900070d 19610631 

  21. 21. Wang X. Zhi L.J. Müllen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells Nano Lett. 2008 8 323 327 10.1021/nl072838r 18069877 

  22. 22. Li X. Zhu Y. Cai W. Borysiak M. Han B. Chen D. Piner R.D. Colombo L. Ruoff R.S. Transfer of large-area graphene films for high-performance transparent conductive electrodes Nano Lett. 2009 9 4359 4363 10.1021/nl902623y 19845330 

  23. 23. Yang Z. Gao R. Hu N. Chai J. Cheng Y. Zhang L. Wei H. Kong E.S.W. Zhang Y. The Prospective 2D Graphene Nanosheets: Preparation, Functionalization and Applications Nano-Micro Lett. 2012 4 1 9 10.1007/BF03353684 

  24. 24. Russo P. Hu A. Compagnini G. Synthesis, Properties and Potential Applications of Porous Graphene: A Review Nano-Micro Lett. 2013 5 260 273 10.1007/BF03353757 

  25. 25. Bae S. Kim H. Lee Y. Xu X. Park J. Zheng Y. Balakrishnan J. Lei T. Kim H. Song Y. Roll-to-roll production of 30-inch graphene films for transparent electrodes Nat. Nanotechnol. 2010 5 574 578 10.1038/nnano.2010.132 20562870 

  26. 26. Shearer C.J. Slattery A.D. Stapleton A.J. Shapter J.G. Gibson C.T. Accurate thickness measurement of graphene Nanotechnology 2016 27 125704 10.1088/0957-4484/27/12/125704 26894444 

  27. 27. Zhu Y. Murali S. Cai W. Li X. Suk J. Potts J. Ruoff R. Graphene and graphene oxide: Synthesis, properties, and applications Adv. Mater. 2010 22 3906 3924 10.1002/adma.201001068 20706983 

  28. 28. Georgakilas V. Otyepka M. Bourlinos A.B. Chandra V. Kim N. Kemp K. Hobza P. Zboril R. Kim K. Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications Chem. Rev. 2012 112 6156 6214 10.1021/cr3000412 23009634 

  29. 29. Agah S. Zheng M. Pasquali M. Kolomeisky A.B. DNA sequencing by nanopores: Advances and challenges J. Phys. D Appl. Phys. 2016 49 413001 10.1088/0022-3727/49/41/413001 

  30. 30. Feng Y. Zhang Y. Ying C. Wang D. Du C. Nanopore-based Fourth-generation DNA Sequencing Technology Genom. Proteom. Bioinf. 2015 13 4 16 10.1016/j.gpb.2015.01.009 25743089 

  31. 31. Chen W. Liu G.C. Ouyang J. Gao M.J. Liu B. Zhao Y.D. Graphene nanopores toward DNA sequencing: A review of experimental aspects Sci. China Chem. 2017 60 721 729 10.1007/s11426-016-9016-5 

  32. 32. Wu X. Mu F. Zhao H. Synthesis and potential applications of nanoporous graphene: A review Proc. Nat. Res. Soc. 2018 2 02003 10.11605/j.pnrs.201802003 

  33. 33. Isaeva O.G. Katkov V.L. Osipov V.A. DNA sequencing through graphene nanogap: A model of sequential electron transport Eur. Phys. J. B 2014 87 272 10.1140/epjb/e2014-50400-2 

  34. 34. Kuila T. Bose S. Khanra P. Mishra A.K. Kim N.H. Lee J.H. Recent advances in graphene-based biosensors Biosens. Bioelectron. 2011 26 4637 4648 10.1016/j.bios.2011.05.039 21683572 

  35. 35. Wang Y. Li Z. Wang J. Li J. Lin Y. Graphene and graphene oxide: Biofunctionalization and applications in biotechnology Trends Biotechnol. 2011 29 205 212 10.1016/j.tibtech.2011.01.008 21397350 

  36. 36. Celik N. Balachandran W. Manivannan N. Graphene-based biosensors: Methods, analysis and future perspectives IET Circuits Devices Syst. 2015 9 434 445 10.1049/iet-cds.2015.0235 

  37. 37. Suvarnaphaet P. Pechprasarn S. Graphene-Based Materials for Biosensors: A Review Sensors 2017 17 2161 10.3390/s17102161 28934118 

  38. 38. Zhu Z. An Overview of Carbon Nanotubes and Graphene for Biosensing Applications Nano-Micro Lett. 2017 9 25 

  39. 39. Myung S. Solanki A. Kim C. Park J. Kim K.S. Lee K. Graphene-Encapsulated Nanoparticle-Based Biosensor for the Selective Detection of Cancer Biomarkers Adv. Mater. 2011 23 2221 2225 10.1002/adma.201100014 21469221 

  40. 40. Yin P.T. Shah S. Chhowalla M. Lee K.B. Design, Synthesis, and Characterization of Graphene-Nanoparticle Hybrid Materials for Bioapplications Chem. Rev. 2015 115 2483 2531 10.1021/cr500537t 25692385 

  41. 41. Yin P.T. Kim T.H. Choi J.W. Lee K.B. Prospects for graphene-nanoparticle-based hybrid sensors Phys. Chem. Chem. Phys. 2015 15 2785 12799 10.1039/c3cp51901e 23828095 

  42. 42. Franca L.T. Carrilho E. Kist T.B. A review of DNA sequencing techniques Q. Rev. Biophys. 2002 35 169 200 10.1017/S0033583502003797 12197303 

  43. 43. Kasianowicz J.J. Brandin E. Branton D. Deamer D.W. Characterization of individual polynucleotide molecules using a membrane channel Proc. Natl. Acad. Sci. USA 1996 93 13770 13773 10.1073/pnas.93.24.13770 8943010 

  44. 44. Deamer D.W. Akeson M. Nanopores and nucleic acids: Prospects for ultrarapid sequencing Trends Biotechnol. 2000 18 147 151 10.1016/S0167-7799(00)01426-8 10740260 

  45. 45. Merchant C.A. Healy K. Wanunu M. Ray V. Peterman N. Bartel J. Fischbein M.D. Venta K. Luo Z. Johnson A.T.C. DNA Translocation through Graphene Nanopores Nano Lett. 2010 10 2915 2921 10.1021/nl101046t 20698604 

  46. 46. Schneider G.F. Kowalczyk S.W. Calado V.E. Pandraud G. Zandbergen H.W. Vandersypen L.M.K. Dekker C. DNA Translocation through Graphene Nanopores Nano Lett. 2010 10 3163 3167 10.1021/nl102069z 20608744 

  47. 47. Garaj S. Hubbard W. Reina A. Kong J. Branton D. Golovchenko J.A. Graphene as a subnanometre trans-electrode membrane Nature 2010 467 190 193 10.1038/nature09379 20720538 

  48. 48. Nelson T. Zhang B. Prezhdo O.V. Detection of Nucleic Acids with Graphene Nanopores: Ab Initio Characterization of a Novel Sequencing Device Nano Lett. 2010 10 3237 3242 10.1021/nl9035934 20722409 

  49. 49. Sathe C. Zou X. Leburton J.-P. Schulten K. Computational investigation of DNA detection using graphene nanopores ACS Nano 2011 5 8842 8851 10.1021/nn202989w 21981556 

  50. 50. Wells D.B. Belkin M. Comer J. Aksimentiev A. Assessing Graphene Nanopores for Sequencing DNA Nano Lett. 2012 12 4117 4123 10.1021/nl301655d 22780094 

  51. 51. Garaj S. Liu S. Golovchenko J.A. Branton D. Molecule-hugging graphene nanopores Proc. Natl. Acad. Sci. USA 2013 110 12192 12196 10.1073/pnas.1220012110 23836648 

  52. 52. Liang L. Cui P. Wang Q. Wu T. Ǻgren H. Tu Y. Theoretical study on key factors in DNA sequencing with graphene nanopores RSC Adv. 2013 3 2445 2453 10.1039/c2ra22109h 

  53. 53. Zhang Z. Shen J. Wang H. Wang Q. Zhang J. Liang L. Ǻgren H. Tu Y. Effects of Graphene Nanopore Geometry on DNA Sequencing J. Phys. Chem. Lett. 2014 5 1602 1607 10.1021/jz500498c 26270103 

  54. 54. Schneider G.F. Xu Q. Hage S. Luik S. Spoor J.N.H. Malladi S. Zandbergen H. Dekker C. Tailoring the hydrophobicity of graphene for its use as nanopores for DNA translocation Nat. Commun. 2013 4 2619 10.1038/ncomms3619 24126320 

  55. 55. Li J. Wang H. Li Y. Han K. The impact of the number of layers of the graphene nanopores and the electrical field on ssDNA translocation Mol. Simul. 2017 43 320 325 10.1080/08927022.2016.1274986 

  56. 56. Liang L. Zhang Z. Shen J. Zhe K. Wang Q. Wu T. Ǻgren H. Tu Y. Theoretical studies on the dynamics of DNA fragment translocation through multilayer graphene nanopores RSC Adv. 2014 4 50494 50502 10.1039/C4RA05909C 

  57. 57. Heerema S.J. Dekker C. Graphene nanodevices for DNA sequencing Nat. Nanotechnol. 2016 11 127 136 10.1038/nnano.2015.307 26839258 

  58. 58. Tash H.A. Belyaeva L.A. Schneider G.F. Single molecule detection with graphene and other two-dimensional materials: Nanopores and beyond Chem. Soc. Rev. 2016 45 476 493 10.1039/C5CS00512D 26612268 

  59. 59. Yuan W. Chen J. Shi G. Nanoporous graphene materials Mater. Today 2014 17 77 85 10.1016/j.mattod.2014.01.021 

  60. 60. Wallace P.R. The band theory of graphite Phys. Rev. 1947 71 622 634 10.1103/PhysRev.71.622 

  61. 61. Fujita M. Wakabayashi K. Nakada K. Kusakabe K. Peculiar localized state at zigzag graphite edge J. Phys. Soc. Jpn. 1996 65 1920 1923 10.1143/JPSJ.65.1920 

  62. 62. Ouyang F.P. Peng S.L. Zhang H. Weng L.B. Xu H. A Biosensor Based on Graphene Nanoribbon with Nanopores: A First Principles Devices-Design Chin. Phys. B 2011 20 58504 10.1088/1674-1056/20/5/058504 

  63. 63. Saha K.K. Drndic M. Nikolic B.K. DNA Base-Specific Modulation of Microampere Transverse Edge Currents through a Metallic Graphene Nanoribbon with a Nanopore Nano Lett. 2012 12 50 55 10.1021/nl202870y 22141739 

  64. 64. Avdoshenko S.M. Nozaki D. da Rocha C.G. Gonzalez J.W. Lee M.H. Gutierrez R. Cuniberti G. Dynamic and Electronic Transport Properties of DNA Translocation through Graphene Nanopores Nano Lett. 2013 13 1969 1976 10.1021/nl304735k 23586585 

  65. 65. Sadeghi H. Algaragholy L. Pope T. Bailey S. Visontai D. Manrique D. Ferrer J. Suarez V.G. Sangtarash S. Lambert C.J. Graphene Sculpturene Nanopores for DNA Nucleobase Sensing J. Phys. Chem. B 2014 118 6908 6914 10.1021/jp5034917 24849015 

  66. 66. Paulechka E. Wassenaar T.A. Kroenlein K. Kazakov A. Smolyanitsky A. Nucleobase-Functionalized Graphene Nanoribbons for Accurate High-Speed DNA Sequencing Nanoscale 2016 8 1861 1867 10.1039/C5NR07061A 26731166 

  67. 67. Sarathy A. Qiu H. Leburton J.P. Graphene Nanopores for Electronic Recognition of DNA Methylation J. Phys. Chem. B 2017 121 3757 3763 10.1021/acs.jpcb.6b11040 28035832 

  68. 68. De Souza F.A.L. Amorim R.G. Scopel W.L. Scheicher R.H. Electrical Detection of Nucleotides via Nanopores in a Hybrid Graphene/h-BN Sheet Nanoscale 2017 9 2207 2212 10.1039/C6NR07154F 28120993 

  69. 69. Traversi F. Raillon C. Benameur S.M. Liu K. Khlybov S. Tosun M. Krasnozhon D. Kis A. Radenovic A. Detecting the translocation of DNA through a nanopore using graphene nanoribbons Nat. Nanotechnol. 2013 8 939 945 10.1038/nnano.2013.240 24240429 

  70. 70. Feliciano G.T. Sanz-Navarro C. Coutinho-Neto M.D. Ordejón P. Scheicher R.H. Rocha A.R. Capacitive DNA Detection Driven by Electronic Charge Fluctuations in a Graphene Nanopore Phys. Rev. Appl. 2015 3 034003 10.1103/PhysRevApplied.3.034003 

  71. 71. Puster M. Balan A. Manzo J.A.R. Danda G. Ahn J. Parkin W. Drndic M. Cross-Talk Between Ionic and Nanoribbon Current Signals in Graphene Nanoribbon-Nanopore Sensors for Single-Molecule Detection Small 2015 11 6309 6316 10.1002/smll.201502134 26500023 

  72. 72. Heerema S.J. Vicarelli L. Pud S. Schouten R.N. Zandbergen H.W. Dekker C. Probing DNA Translocations with Inplane Current Signals in a Graphene Nanoribbon with a Nanopore ACS Nano 2018 12 2623 2633 10.1021/acsnano.7b08635 29474060 

  73. 73. Han S.J. Jenkins K.A. Garcia A.V. Franklin A.D. Bol A.A. Haensch W. High-Frequency Graphene Voltage Amplifier Nano Lett. 2011 11 3690 3693 10.1021/nl2016637 21805988 

  74. 74. Petrone N. Meric I. Hone J. Shepard K.L. Graphene Field-Effect Transistors with Gigahertz-Frequency Power Gain on Flexible Substrates Nano Lett. 2013 13 121 125 10.1021/nl303666m 23256606 

  75. 75. Postma H.W.C. Rapid sequencing of individual DNA molecules in graphene nanogaps Nano Lett. 2010 10 420 425 10.1021/nl9029237 20044842 

  76. 76. Prasongkit J. Grigoriev A. Pathak B. Ahuja R. Scheicher R.H. Transverse Conductance of DNA Nucleotides in a Graphene Nanogap from First Principles Nano Lett. 2011 11 1941 1945 10.1021/nl200147x 21495701 

  77. 77. He Y. Scheicher R.H. Grigoriev A. Ahuja R. Long S. Huo Z. Liu M. Enhanced DNA Sequencing Performance through Edge-Hydrogenation of Graphene Electrodes Adv. Funct. Mater. 2011 21 2674 2679 10.1002/adfm.201002530 

  78. 78. Jeong H. Kim H.S. Lee S.H. Lee D. Kim Y.H. Huh N. Quantum interference in DNA bases probed by graphene nanoribbons Appl. Phys. Lett. 2013 103 023701 10.1063/1.4813418 

  79. 79. Zhang H. Xu H. Ni X. Peng S.L. Liu Q. OuYang F.P. Detection of nucleic acids by graphene-based devices: A first-principles study J. Appl. Phys. 2014 115 133701 10.1063/1.4870115 

  80. 80. Prasongkit J. Grigoriev A. Pathak B. Ahuja R. Scheicher R.H. Theoretical study of electronic transport through DNA nucleotides in a double-functionalized graphene nanogap J. Phys. Chem. C 2013 117 15421 15428 10.1021/jp4048743 

  81. 81. Amorim R.G. Rocha A.R. Scheicher R.H. Boosting DNA Recognition Sensitivity of Graphene Nanogaps through Nitrogen Edge Functionalization J. Phys. Chem. C 2016 120 19384 19388 10.1021/acs.jpcc.6b04683 

  82. 82. Shukla V. Jena N.K. Grigoriev A. Ahuja R. Prospects of Graphene-hBN Heterostructure Nanogap for DNA Sequencing ACS Appl. Mater. Interfaces 2017 9 39945 39952 10.1021/acsami.7b06827 29099165 

  83. 83. Patel H.N. Carroll I. Lopez R. Jr. Sankararaman S. Etienne C. Kodigala S.R. Paul M.R. Postma H.W.C. DNA-graphene interactions during translocation through nanogaps PLoS ONE 2017 12 e0171505 10.1371/journal.pone.0171505 28158244 

  84. 84. Gowtham S. Scheicher R. Ahuja R. Pandey R. Karna S. Physisorption of nucleobases on graphene: Density-functional calculations Phys. Rev. B 2007 76 033401 10.1103/PhysRevB.76.033401 

  85. 85. Lee J.H. Choi Y.K. Kim H.J. Scheicher R.H. Cho J.H. Physisorption of DNA nucleobases on h-BN and graphene: VdW-corrected DFT calculations J. Phys. Chem. C 2013 117 13435 13441 10.1021/jp402403f 

  86. 86. Min S.K. Kim W.Y. Cho Y. Kim K.S. Fast DNA sequencing with a graphene-based nanochannel device Nat. Nanotechnol. 2011 6 162 165 10.1038/nnano.2010.283 21297626 

  87. 87. Cho Y. Min S.K. Kim W.Y. Kim K.S. The origin of dips for the graphene-based DNA sequencing device Phys. Chem. Chem. Phys. 2011 13 14293 14296 10.1039/c1cp20760a 21617796 

  88. 88. Bobadilla A.D. Seminario J.M. Assembly of a noncovalent DNA junction on graphene sheets and electron transport characteristics J. Phys. Chem. C 2013 117 26441 26453 10.1021/jp408692p 

  89. 89. Lerf A. He H. Forster M. Klinowski J. Structure of graphite oxide revisited J. Phys. Chem. B 1998 102 4477 4482 10.1021/jp9731821 

  90. 90. Park S. An J. Jung I. Piner R.D. An S.J. Li X. Velamakanni A. Ruoff R.S. Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents Nano Lett. 2009 9 1593 1597 10.1021/nl803798y 19265429 

  91. 91. Stankovich S. Piner R.D. Chen X. Wu N. Nguyen S.T. Ruo R.S. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate) J. Mater. Chem. 2006 16 155 158 10.1039/B512799H 

  92. 92. Huang J. Larisika M. Fam W.H.D. He Q. Nimmo M.A. Nowak C. Tok I.Y.A. The extended growth of graphene oxide flakes using ethanol CVD Nanoscale 2013 5 2945 2951 10.1039/c3nr33704a 23455030 

  93. 93. Kagan V. Konduru N. Feng W. Allen B. Conroy J. Volkov Y. Vlasova I.I. Belikova N.A. Yanamala N. Kapralov A. Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation Nat. Nanotechnol. 2010 5 354 359 10.1038/nnano.2010.44 20364135 

  94. 94. Sassolas A. Leca-Bouvier B.D. Blum L.J. DNA Biosensors and Microarrays Chem. Rev. 2008 108 109 139 10.1021/cr0684467 18095717 

  95. 95. Drummond T.G. Hill M.G. Barton J.K. Electrochemical DNA sensors Nat. Biotechnol. 2003 21 1192 1199 10.1038/nbt873 14520405 

  96. 96. Bonanni A. Pumera M. Graphene Platform for Hairpin-DNA-Based Impedimetric Genosensing ACS Nano 2011 5 2356 2361 10.1021/nn200091p 21355609 

  97. 97. Fujii S. Enoki T. Cutting of oxidized graphene into nanosized pieces J. Am. Chem. Soc. 2010 132 10034 10041 10.1021/ja101265r 20590120 

  98. 98. Bonanni A. Ambrosi A. Pumera M. Nucleic acid functionalized graphene for biosensing Chem.-Eur. J. 2012 18 1668 1673 10.1002/chem.201102850 22213459 

  99. 99. Dubuisson E. Yang Z. Loh K.P. Optimizing Label-Free DNA Electrical Detection on Graphene Platform Anal. Chem. 2011 83 2452 2460 10.1021/ac102431d 21370838 

  100. 100. Hu Y. Li F. Bai X. Li D. Hua S. Wang K. Niu L. Label-free electrochemical impedance sensing of DNA hybridization based on functionalized graphene sheets Chem. Commun. 2011 47 1743 1745 10.1039/C0CC04514D 21125081 

  101. 101. Li F. Yang H. Shan C. Zhang Q. Han D. Ivaska A. Niu L. The synthesis of perylene-coated graphene sheets decorated with Au nanoparticles and its electrocatalysis toward oxygen reduction J. Mater. Chem. 2009 19 4022 4025 10.1039/b902791b 

  102. 102. Sun W. Zhang Y. Ju X. Li G. Gao H. Sun Z. Electrochemical deoxyribonucleic acid biosensor based on carboxyl functionalized graphene oxide and poly-l-lysine modified electrode for the detection of tlh gene sequence related to vibrio parahaemolyticus Anal. Chim. Acta 2012 752 39 44 10.1016/j.aca.2012.09.009 23101650 

  103. 103. Hu Y. Wang K. Zhang Q. Li F. Wu T. Niu L. Decorated graphene sheets for label-free DNA impedance biosensing Biomaterials 2012 33 1097 1106 10.1016/j.biomaterials.2011.10.045 22061487 

  104. 104. Zhang Z. Luo L. Chen G. Ding Y. Deng D. Fan C. Tryptamine functionalized reduced graphene oxide for label-free DNA impedimetric biosensing Biosens. Bioelectron. 2014 60 161 166 10.1016/j.bios.2014.03.067 24796272 

  105. 105. Luo L. Zhang Z. Ding Y. Deng D. Zhu X. Wang Z. Label-free electrochemical impedance genosensor based on 1-aminopyrene/graphene hybrids Nanoscale 2013 5 5833 5840 10.1039/c3nr01237a 23695370 

  106. 106. Zheng Q. Hu H. Shen Z. Gao W. Yu Y. Ma Y. Guang W. Guo Q. Yan R. Wang J. An electrochemical DNA sensor based on polyaniline/graphene: High sensitivity to DNA sequences in a wide range Analyst 2015 140 6660 6670 10.1039/C5AN01088H 26309910 

  107. 107. Hinnemo M. Zhao J. Ahlberg P. Hägglund C. Djurberg V. Scheicher R.H. Zhang S.L. Zhang Z.B. On Monolayer Formation of Pyrenebutyric Acid on Graphene Langmuir 2017 33 3588 3593 10.1021/acs.langmuir.6b04237 28350965 

  108. 108. Wang Z. Zhang J. Chen P. Zhou X. Yang Y. Wu S. Niu L. Han Y. Wang L. Chen P. Label-free, electrochemical detection of methicillin-resistant staphylococcus aureus DNA with reduced graphene oxide-modified electrodes Biosens. Bioelctron. 2011 26 3881 3886 10.1016/j.bios.2011.03.002 21458255 

  109. 109. Benvidi A. Rajabzadeh N. Ardakani M.M. Heidari M.M. Mulchandani A. Simple and label-free electrochemical impedance Amelogenin gene hybridization biosensing based on reduced graphene oxide Biosens. Bioelectron. 2014 58 145 152 10.1016/j.bios.2014.01.053 24632459 

  110. 110. Zhou M. Zhai Y. Dong S. Electrochemical Sensing and Biosensing Platform Based on Chemically Reduced Graphene Oxide Anal. Chem. 2009 81 5603 5613 10.1021/ac900136z 19522529 

  111. 111. Niwa O. Jia J. Sato Y. Kato D. Kurita R. Maruyama K. Suzuki K. Hirono S. Electrochemical Performance of Angstrom Level Flat Sputtered Carbon Film Consisting of sp2 and sp3 Mixed Bonds J. Am. Chem. Soc. 2006 128 7144 7145 10.1021/ja060609l 16734451 

  112. 112. Kato D. Sekioka N. Ueda A. Kurita R. Hirono S. Suzuki K. Niwa O. A Nanocarbon Film Electrode as a Platform for Exploring DNA Methylation J. Am. Chem. Soc. 2008 130 3716 3717 10.1021/ja710536p 18314986 

  113. 113. Li D. Yang X. Xiao B. Geng F. Hong J. Sheibani N. Movahedi A.A.M. Detection of Guanine and Adenine Using an Aminated Reduced Graphene Oxide Functional Membrane-Modified Glassy Carbon Electrode Sensors 2017 17 1652 10.3390/s17071652 28718793 

  114. 114. Lin X. Ni Y. Pei X. Kokot S. Electrochemical detection of DNA damage induced by clenbuterol at a reduced graphene oxide-Nafion modified glassy carbon electrode Anal. Methods 2017 9 1105 1111 10.1039/C6AY03022J 

  115. 115. Yardim Y. Vandeput M. Ҫelebi M. Şentürk Z. Kauffmann J.M. A Reduced Graphene Oxide-based Electrochemical DNA Biosensor for the Detection of Interaction between Cisplatin and DNA based on Guanine and Adenine Oxidation Signals Electroanalysis 2017 29 1451 1458 10.1002/elan.201600804 

  116. 116. Ambrosi A. Pumera M. Stacked graphene nanofibers for electrochemical oxidation of DNA bases Phys. Chem. Chem. Phys. 2010 12 8943 8947 10.1039/c0cp00213e 20532301 

  117. 117. Lim C.X. Hoh H.Y. Ang P.K. Loh K.P. Direct voltammetric detection of DNA and pH sensing on epitaxial graphene: An insight into the role of oxygenated defects Anal. Chem. 2010 82 7387 7393 10.1021/ac101519v 20712323 

  118. 118. Akhavan O. Ghaderi E. Rahighi R. Toward single-DNA electrochemical biosensing by graphene nanowalls ACS Nano 2012 6 2904 2916 10.1021/nn300261t 22385391 

  119. 119. Matsumoto K. Maehashi K. Ohno Y. Inoue K. Recent advances in functional graphene biosensors J. Phys. D Appl. Phys. 2014 47 094005 10.1088/0022-3727/47/9/094005 

  120. 120. Mohanty N. Berry V. Graphene-based single-bacterium resolution biodevice and DNA transistor interfacing graphene derivatives with nanoscale and microscale biocomponents Nano Lett. 2008 8 4469 4476 10.1021/nl802412n 19367973 

  121. 121. Ping J.L. Vishnubhotla R. Vrudhula A. Johnson A.T.C. Scalable production of high-sensitivity, label-free DNA biosensors based on back-gated graphene field effect transistors ACS Nano 2016 10 8700 8704 10.1021/acsnano.6b04110 27532480 

  122. 122. Xu G.Y. Abbott J. Qin L. Yeung K.Y.M. Song Y. Yoon H. Kong J. Ham D. Electrophoretic and field-effect graphene for all-electrical DNA array technology Nat. Commun. 2014 5 4866 10.1038/ncomms5866 25189574 

  123. 123. Dong X. Shi Y. Huang W. Chen P. Li L. Electrical Detection of DNA Hybridization with Single-Base Specificity Using Transistors Based on CVD-Grown Graphene Sheets Adv. Mater. 2010 22 1649 1653 10.1002/adma.200903645 20496398 

  124. 124. Lin J. Teweldebrhan D. Ashraf K. Liu G. Jing X. Yan Z. Li R. Ozkan M. Lake R.K. Balandin A.A. Gating of single-layer graphene with single-stranded deoxyribonucleic acids Small 2010 6 1150 1155 10.1002/smll.200902379 20473987 

  125. 125. Stine R. Robinson J.T. Sheehan P.E. Tamanaha C.R. Real-time DNA detection using reduced graphene oxide field effect transistors Adv. Mater. 2010 22 5297 5300 10.1002/adma.201002121 20872408 

  126. 126. Zheng C. Huang L. Zhang H. Sun Z. Zhang Z. Zhang G. Fabrication of Ultrasensitive Field-Effect Transistor DNA Biosensors by a Directional Transfer Technique Based on CVD-Grown Graphene ACS Appl. Mater. Interfaces 2015 7 16953 16959 10.1021/acsami.5b03941 26203889 

  127. 127. Cai B. Wang S. Huang L. Ning Y. Zhang Z. Zhang G. Ultrasensitive Label-Free Detection of PNA-DNA Hybridization by Reduced Graphene Oxide Field-Effect Transistor Biosensor ACS Nano 2014 8 2632 2638 10.1021/nn4063424 24528470 

  128. 128. Yin Z. He Q. Huang X. Zhang J. Wu S. Chen P. Lu G. Chen P. Zhang Q. Yan Q. Real-time DNA detection using Pt nanoparticle-decorated reduced graphene oxide field-effect transistors Nanoscale 2012 4 293 297 10.1039/C1NR11149C 22089471 

  129. 129. Narváez E.M. Merkoçi A. Graphene Oxide as an Optical Biosensing Platform Adv. Mater. 2012 24 3298 3308 10.1002/adma.201200373 22628274 

  130. 130. Mkhoyan K.A. Contryman A.W. Silcox J. Stewart D.A. Eda G. Mattevi C. Miller S. Chhowalla M. Atomic and Electronic Structure of Graphene-Oxide Nano Lett. 2009 9 1058 1063 10.1021/nl8034256 19199476 

  131. 131. Mattevi C. Eda G. Agnoli S. Miller S. Mkhoyan K.A. Celik O. Mastrogiovanni D. Granozzi G. Garfunkel E. Chhowalla M. Evolution of Electrical, Chemical, and Structural Properties of Transparent and Conducting Chemically Derived Graphene Thin Films Adv. Funct. Mater. 2009 19 2577 2583 10.1002/adfm.200900166 

  132. 132. Swathi R.S. Sebastian K.L. Long range resonance energy transfer from a dye molecule to graphene has (distance)-4 dependence J. Chem. Phys. 2009 130 086101 10.1063/1.3077292 19256631 

  133. 133. Swathi R.S. Sebastian K.L. Resonance energy transfer from a dye molecule to graphene J. Chem. Phys. 2008 129 054703 10.1063/1.2956498 18698917 

  134. 134. Loh K.P. Bao Q. Eda G. Chhowalla M. Graphene oxide as a chemically tunable platform for optical applications Nat. Chem. 2010 2 1015 1024 10.1038/nchem.907 21107364 

  135. 135. Zhu C. Du D. Lin Y. Graphene and graphene-like 2D materials for optical biosensing and bioimaging: A review 2D Mater. 2015 2 032004 10.1088/2053-1583/2/3/032004 

  136. 136. Liu F. Choi J.Y. Seo T.S. Graphene oxide arrays for detecting specific DNA hybridization by fluorescence resonance energy transfer Biosens. Bioelectron. 2010 25 2361 2365 10.1016/j.bios.2010.02.022 20299201 

  137. 137. Piao Y. Liu F. Seo T.S. The photoluminescent graphene oxide serves as an acceptor rather than a donor in the fluorescence resonance energy transfer pair of Cy3.5-graphene oxide Chem. Commun. 2011 47 12149 12151 10.1039/c1cc15043j 21993302 

  138. 138. Lu C. Yang H. Zhu C. Chen X. Chen G. A Graphene Platform for Sensing Biomolecules Angew. Chem. Int. Ed. 2009 48 4785 4787 10.1002/anie.200901479 19475600 

  139. 139. Li F. Huang Y. Yang Q. Zhong Z. Li D. Wang L. Song S. Fan C. A graphene enhanced molecular beacon for homogeneous DNA detection Nanoscale 2010 2 1021 1026 10.1039/b9nr00401g 20648302 

  140. 140. Lu C.H. Li J. Liu J.J. Yang H.H. Chen X. Chen G.N. Increasing the sensitivity and single-base mismatch selectivity of the molecular beacon using graphene oxide as the ‘nanoquencher’ Chem.-Eur. J. 2010 16 4889 4894 10.1002/chem.200903071 20301144 

  141. 141. He S. Song B. Li D. Zhu C. Qi W. Wen Y. Wang L. Song S. Fang H. Fan C. A Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis Adv. Funct. Mater. 2010 20 453 459 10.1002/adfm.200901639 

  142. 142. Zhang M. Yin B.-C. Tan W. Ye B.-C. A versatile graphene-based fluorescence “on/off” switch for multiplex detection of various targets Biosens. Bioelectron. 2010 26 3260 3265 10.1016/j.bios.2010.12.037 21255996 

  143. 143. Wu C. Zhou Y. Miao X. Ling L. A novel fluorescent biosensor for sequence-specific recognition of double-stranded DNA with the platform of graphene oxide Analyst 2011 136 2106 2110 10.1039/c1an15061h 21442091 

  144. 144. Jang H. Kim Y.K. Kwon H.M. Yeo W.S. Kim D.E. Min D.H. A Graphene-Based Platform for the Assay of Duplex-DNA Unwinding by Helicase Angew. Chem. Int. Ed. 2010 122 5839 5843 10.1002/ange.201001332 

  145. 145. Liu B. Sun Z. Zhang X. Liu J. Mechanism of DNA Sensing on Graphene Oxide Anal. Chem. 2013 85 7987 7993 10.1021/ac401845p 23875867 

  146. 146. Hong B.J. An Z. Compton O.C. Nguyen S.T. Tunable biomolecular interaction and fluorescence quenching ability of graphene oxide: Application to “turn-on” DNA sensing in biological media Small 2012 8 2469 2476 10.1002/smll.201200264 22696425 

  147. 147. Wu M. Kempaiah R. Huang P.J. Maheshwari V. Liu J. Adsorption and desorption of DNA on graphene oxide studied by fluorescently labeled oligonucleotides Langmuir 2011 27 2731 2738 10.1021/la1037926 21302946 

  148. 148. McAuley C.B. Wildgoose G.G. Compton R.G. The physicochemical aspects of DNA sensing using electrochemical methods Biosens. Bioelectron. 2009 24 3183 3190 10.1016/j.bios.2009.01.045 19264472 

  149. 149. Balapanuru J. Yang J.X. Xiao S. Bao Q. Jahan M. Polavarapu L. Wei J. Xu Q.H. Loh K.P. A graphene oxide-organic dye ionic complex with DNA-sensing and opticallimiting properties Angew. Chem. Int. Ed. 2010 49 6549 6553 10.1002/anie.201001004 20669201 

  150. 150. Tao Y. Lin Y. Huang Z. Ren J. Qu X. DNA-templated silver nanoclusters-graphene oxide nanohybrid materials: A platform for label-free and sensitive fluorescence turn-on detection of multiple nucleic acid targets Analyst 2012 137 2588 2592 10.1039/c2an35373c 22540117 

  151. 151. Kong B.S. Geng J.X. Jung H.T. Layer-by-layer assembly of graphene and gold nanoparticles by vacuum filtration and spontaneous reduction of gold ions Chem. Commun. 2009 16 2174 2176 10.1039/b821920f 19360184 

  152. 152. Wu Z.S. Zhou G. Yin L.C. Ren W. Li F. Cheng H.M. Graphene/metal oxide composite electrode materials for energy storage Nano Energy 2012 1 107 131 10.1016/j.nanoen.2011.11.001 

  153. 153. Kamat P.V. Graphene-Based Nanoarchitectures. Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Carbon Support J. Phys. Chem. Lett. 2010 1 520 527 10.1021/jz900265j 

  154. 154. Du D. Yang Y. Lin Y. Graphene-based materials for biosensing and bioimaging MRS Bull. 2012 37 1290 1296 10.1557/mrs.2012.209 

  155. 155. Lin L. Liu Y. Tang L. Li J. Electrochemical DNA sensor by the assembly of graphene and DNA-conjugated gold nanoparticles with silver enhancement strategy Analyst 2011 136 4732 4737 10.1039/c1an15610a 21952074 

  156. 156. Du Y. Guo S. Dong S. Wang E. An integrated sensing system for detection of DNA using new parallel-motif DNA triplex system and graphene-mesoporous silica-gold nanoparticle hybrids Biomaterials 2011 32 8584 8592 10.1016/j.biomaterials.2011.07.091 21855133 

  157. 157. Sun W. Qi X. Zhang Y. Yang H. Gao H. Chen Y. Sun Z. Electrochemical DNA biosensor for the detection of Listeria monocytogenes with dendritic nanogold and electrochemical reduced graphene modified carbon ionic liquid electrode Electrochim. Acta 2012 85 145 151 10.1016/j.electacta.2012.07.133 

  158. 158. Rasheed P.A. Sandhyarani N. Graphene-DNA electrochemical sensor for the sensitive detection of BRCA1 gene Sens. Actuators B 2014 204 777 782 10.1016/j.snb.2014.08.043 

  159. 159. Wang Z. Zhang J. Yin Z. Wu S. Mandler D. Zhang H. Fabrication of nanoelectrode ensembles by electrodeposition of Au nanoparticles on single-layer graphene oxide sheets Nanoscale 2012 4 2728 2733 10.1039/c2nr30142c 22434054 

  160. 160. Wang J. Shi A. Fang X. Han X. Zhang Y. An ultrasensitive supersandwich electrochemical DNA biosensor based on gold nanoparticles decorated reduced graphene oxide Anal. Biochem. 2015 469 71 75 10.1016/j.ab.2014.09.023 25312467 

  161. 161. Peng H.P. Hu Y. Liu P. Deng Y.N. Wang P. Chen W. Liu A.L. Chen Y.Z. Lin X.H. Label-free electrochemical DNA biosensor for rapid detection of mutidrug resistance gene based on Au nanoparticles/toluidine blue–graphene oxide nanocomposites Sens. Actuators B Chem. 2015 207 269 276 10.1016/j.snb.2014.10.059 

  162. 162. Sun X. Jia M. Guan L. Ji J. Zhang Y. Tang L. Li Z. Multilayer graphene–gold nanocomposite modified stem-loop DNA biosensor for peanut allergen-Ara h1 detection Food Chem. 2015 172 335 342 10.1016/j.foodchem.2014.09.042 25442562 

  163. 163. Cristobal P.A. Vilela P. Sagheer A.E. Cabarcos E.L. Brown T. Muskens O.L. Retama J.R. Kanaras A.G. Highly Sensitive DNA Sensor Based on Upconversion Nanoparticles and Graphene Oxide ACS Appl. Mater. Interfaces 2015 7 12422 12429 10.1021/am507591u 25622622 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로