$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Bayesian Approach for Predicting Soil-Water Characteristic Curve from Particle-Size Distribution Data 원문보기

Energies, v.12 no.15, 2019년, pp.2992 -   

Wang, Lin ,  Zhang, Wengang ,  Chen, Fuyong

Abstract AI-Helper 아이콘AI-Helper

Soil-water characteristic curve (SWCC) is a significant prerequisite for slope stability analysis involving unsaturated soils. However, it is difficult to measure an entire SWCC over a wide suction range using in-situ or laboratory tests. As an alternative, the Arya and Paris (AP) model provides a f...

참고문헌 (41)

  1. Fredlund Unsaturated Soil Mechanics in Engineering Practice 2012 

  2. Lu Unsaturated Soil Meichanics 2004 

  3. Prakash, A., Hazra, B., Deka, A., Sreedeep, S.. Probabilistic Analysis of Water Retention Characteristic Curve of Fly Ash. International journal of geomechanics, vol.17, no.12, 04017111-.

  4. Arya, Lalit M., Heitman, Joshua L.. A Non-Empirical Method for Computing Pore Radii and Soil Water Characteristics from Particle-Size Distribution. Soil Science Society of America journal : SSSAJ, vol.79, no.6, 1537-1544.

  5. Arya, Lalit M., Leij, Feike J., van Genuchten, Martinus Th., Shouse, Peter J.. Scaling Parameter to Predict the Soil Water Characteristic from Particle-Size Distribution Data. Soil Science Society of America journal, vol.63, no.3, 510-519.

  6. Arya, Lalit M., Paris, Jack F.. A Physicoempirical Model to Predict the Soil Moisture Characteristic from Particle‐Size Distribution and Bulk Density Data. Soil Science Society of America journal, vol.45, no.6, 1023-1030.

  7. Hwang, Sang Il, Powers, Susan E.. Using Particle‐Size Distribution Models to Estimate Soil Hydraulic Properties. Soil Science Society of America journal, vol.67, no.4, 1103-1112.

  8. Li, D., Gao, G., Shao, M., Fu, B.. Predicting available water of soil from particle-size distribution and bulk density in an oasis-desert transect in northwestern China. Journal of hydrology, vol.538, 539-550.

  9. Mohammadi, Mohammad Hossein, Vanclooster, Marnik. Predicting the Soil Moisture Characteristic Curve from Particle Size Distribution with a Simple Conceptual Model. Vadose zone journal VZJ, vol.10, no.2, 594-602.

  10. Nasta, P., Kamai, T., Chirico, G.B., Hopmans, J.W., Romano, N.. Scaling soil water retention functions using particle-size distribution. Journal of hydrology, vol.374, no.3, 223-234.

  11. Wosten, J.H.M., Pachepsky, Ya.A., Rawls, W.J.. Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. Journal of hydrology, vol.251, no.3, 123-150.

  12. Chiu, C.F., Yan, W.M., Yuen, Ka-Veng. Estimation of water retention curve of granular soils from particle-size distribution - a Bayesian probabilistic approach. Canadian geotechnical journal: Revue canadienne de géotechnique, vol.49, no.9, 1024-1035.

  13. Fredlund, Murray D, Wilson, G Ward, Fredlund, Delwyn G. Use of the grain-size distribution for estimation of the soil-water characteristic curve. Canadian geotechnical journal: Revue canadienne de géotechnique, vol.39, no.5, 1103-1117.

  14. Minasny, Budiman, McBratney, Alex B., Bristow, Keith L.. Comparison of different approaches to the development of pedotransfer functions for water-retention curves. Geoderma, vol.93, no.3, 225-253.

  15. Nemes, Attila, Rawls, Walter J.. Evaluation of different representations of the particle-size distribution to predict soil water retention. Geoderma, vol.132, no.1, 47-58.

  16. Schaap, Marcel G., Bouten, Willem. Modeling water retention curves of sandy soils using neural networks. Water resources research, vol.32, no.10, 3033-3040.

  17. VEREECKEN, H., MAES, J., FEYEN, J., DARIUS, P.. ESTIMATING THE SOIL MOISTURE RETENTION CHARACTERISTIC FROM TEXTURE, BULK DENSITY, AND CARBON CONTENT :. Soil science, vol.148, no.6, 389-403.

  18. Chirico, G.B., Medina, H., Romano, N.. Functional evaluation of PTF prediction uncertainty: An application at hillslope scale. Geoderma, vol.155, no.3, 193-202.

  19. Pachepsky, Ya., Rajkai, K., Tóth, B.. Pedotransfer in soil physics: trends and outlook - A review -. Agrokémia és talajtan. Agrokhimi&n.illigat;&n.arligat; i pochvovedenie. Agrochemistry and soil science, vol.64, no.2, 339-360.

  20. Antinoro, C., Bagarello, V., Ferro, V., Giordano, G., Iovino, M.. A simplified approach to estimate water retention for Sicilian soils by the Arya-Paris model. Geoderma, vol.213, 226-234.

  21. Vaz, Carlos Manoel Pedro, de Freitas Iossi, Murilo, de Mendonça Naime, João, Macedo, Álvaro, Reichert, José M., Reinert, Dalvan José, Cooper, Miguel. Validation of the Arya and Paris Water Retention Model for Brazilian Soils. Soil Science Society of America journal, vol.69, no.3, 577-583.

  22. Fredlund, Murray D, Fredlund, D G, Wilson, G Ward. An equation to represent grain-size distribution. Canadian geotechnical journal: Revue canadienne de géotechnique, vol.37, no.4, 817-827.

  23. Bayat, H., Rastgo, M., Mansouri Zadeh, M., Vereecken, H.. Particle size distribution models, their characteristics and fitting capability. Journal of hydrology, vol.529, no.3, 872-889.

  24. Yuen Bayesian Methods for Structural Dynamics and Civil Engineering 2010 

  25. Zhou, W.H., Yuen, K.V., Tan, F.. Estimation of soil-water characteristic curve and relative permeability for granular soils with different initial dry densities. Engineering geology, vol.179, 1-9.

  26. Fredlund, D.G., Xing, Anqing. Equations for the soil-water characteristic curve. Canadian geotechnical journal: Revue canadienne de géotechnique, vol.31, no.4, 521-532.

  27. Sillers, W Scott, Fredlund, Delwyn G. Statistical assessment of soil-water characteristic curve models for geotechnical engineering. Canadian geotechnical journal: Revue canadienne de géotechnique, vol.38, no.6, 1297-1313.

  28. Wang, Lin, Cao, Zi-Jun, Li, Dian-Qing, Phoon, Kok-Kwang, Au, Siu-Kui. Determination of site-specific soil-water characteristic curve from a limited number of test data – A Bayesian perspective. Geoscience frontiers. = 地學前緣(英文版), vol.9, no.6, 1665-1677.

  29. Beck, James L., Au, Siu-Kui. Bayesian Updating of Structural Models and Reliability using Markov Chain Monte Carlo Simulation. Journal of engineering mechanics, vol.128, no.4, 380-391.

  30. Cao, Z., Wang, Y.. Bayesian model comparison and selection of spatial correlation functions for soil parameters. Structural safety, vol.49, 10-17.

  31. Wang, Y., Cao, Z.. Probabilistic characterization of Young's modulus of soil using equivalent samples. Engineering geology, vol.159, 106-118.

  32. Zhang, L.L., Zhang, J., Zhang, L.M., Tang, W.H.. Back analysis of slope failure with Markov chain Monte Carlo simulation. Computers and geotechnics, vol.37, no.7, 905-912.

  33. Hastings, W. K.. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, vol.57, no.1, 97-109.

  34. Metropolis, Nicholas, Rosenbluth, Arianna W., Rosenbluth, Marshall N., Teller, Augusta H., Teller, Edward. Equation of State Calculations by Fast Computing Machines. The Journal of chemical physics, vol.21, no.6, 1087-1092.

  35. Au, Siu-Kui, Beck, James L.. Estimation of small failure probabilities in high dimensions by subset simulation. Probabilistic engineering mechanics, vol.16, no.4, 263-277.

  36. Nemes, A., Schaap, M., Leij, F., Wosten, J.. Description of the unsaturated soil hydraulic database UNSODA version 2.0. Journal of hydrology, vol.251, no.3, 151-162.

  37. Buckland, S. T., Hjorth, J. S. U.. Computer Intensive Statistical Methods: Validation Model Selection and Bootstrap.. Biometrics, vol.50, no.2, 586-.

  38. Rahimi, Arezoo, Rahardjo, Harianto. New approach to improve soil-water characteristic curve to reduce variation in estimation of unsaturated permeability function. Canadian geotechnical journal. Revue canadienne de gèotechnique, vol.53, no.4, 717-725.

  39. Zhang, W.G., Goh, A.T.C.. Multivariate adaptive regression splines for analysis of geotechnical engineering systems. Computers and geotechnics, vol.48, 82-95.

  40. Zhang, W., Goh, A.T.C.. Multivariate adaptive regression splines and neural network models for prediction of pile drivability. Geoscience frontiers. = 地學前緣(英文版), vol.7, no.1, 45-52.

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로