$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Fabrication of a Food Nano-Platform Sensor for Determination of Vanillin in Food Samples 원문보기

Sensors, v.18 no.9, 2018년, pp.2817 -   

Gupta, Vinod Kumar (Department of Applied Chemistry, University of Johannesburg, Johannesburg 17011, South Africa) ,  Karimi-Maleh, Hassan (shilpi.agarwal2307@gmail.com) ,  Agarwal, Shilpi (Laboratory of Nanotechnology, Department of Chemical Engineering, Quchan University of Technology, Quchan 94771-67335, Iran) ,  Karimi, Fatemeh (fkm024@gmail.com) ,  Bijad, Majede (Department of Applied Chemistry, University of Johannesburg, Johannesburg 17011, South Africa) ,  Farsi, Mohammad (shilpi.agarwal2307@gmail.com) ,  Shahidi, Seyed-Ahmad (Laboratory of Nanotechnology, Department of Chemical Engineering, Quchan University of Technology, Quchan 94771-67335, Iran)

Abstract AI-Helper 아이콘AI-Helper

Herein, we describe the fabrication of NiO decorated single wall carbon nanotubes (NiO-SWCNTs) nanocomposites using the precipitation method. The synthesized NiO-SWCNTs nanocomposites were characterized by X-ray diffraction (XRD) and Transmission electron microscopy (TEM). Remarkably, NiO-SWCNTs and...

주제어

참고문헌 (52)

  1. 1. Cifuentes A. Food analysis and Foodomics J. Chromatogr. A 2009 1216 7109 10.1016/j.chroma.2009.09.018 19765718 

  2. 2. Worm M. Ehlers I. Sterry W. Zuberbier T. Clinical relevance of food additives in adult patients with atopic dermatitis Clin. Exp. Allergy 2000 30 404 417 10.1046/j.1365-2222.2000.00722.x 

  3. 3. Charissou A. Ait-Ameur L. Birlouez-Aragon I. Evaluation of a gas chromatography/mass spectrometry method for the quantification of carboxymethyllysine in food samples J. Chromatogr. A 2007 1140 189 194 10.1016/j.chroma.2006.11.066 17174315 

  4. 4. Kenney B.F. Determination of organic acids in food samples by capillary electrophoresis J. Chromatogr. A 1991 546 423 430 10.1016/S0021-9673(01)93041-9 

  5. 5. Wen X. Yang Q. Yan Z. Deng Q. Determination of cadmium and copper in water and food samples by dispersive liquid–liquid microextraction combined with UV–vis spectrophotometry Microchem. J. 2011 97 249 254 10.1016/j.microc.2010.09.010 

  6. 6. Yang D. Ying Y. Applications of Raman Spectroscopy in Agricultural Products and Food Analysis: A Review Appl. Spectrosc. Rev. 2011 46 539 560 10.1080/05704928.2011.593216 

  7. 7. Shabir G.A. Validation of high-performance liquid chromatography methods for pharmaceutical analysis: Understanding the differences and similarities between validation requirements of the US Food and Drug Administration, the US Pharmacopeia and the International Conference on Harmonization J. Chromatogr. A 2003 987 57 66 12613797 

  8. 8. Bijad M. Karimi-Maleh H. Farsi M. Shahidi S.A. An electrochemical-amplified-platform based on the nanostructure voltammetric sensor for the determination of carmoisine in the presence of tartrazine in dried fruit and soft drink samples J. Food Meas. Charact. 2018 12 634 640 10.1007/s11694-017-9676-1 

  9. 9. Sheikhshoaie M. Karimi-Maleh H. Sheikhshoaie I. Ranjbar M. Voltammetric amplified sensor employing RuO 2 nano-road and room temperature ionic liquid for amaranth analysis in food samples J. Mol. Liq. 2017 229 489 494 10.1016/j.molliq.2016.12.088 

  10. 10. Baghizadeh A. Karimi-Maleh H. Khoshnama Z. Hassankhani A. Abbasghorbani M. A voltammetric sensor for simultaneous determination of vitamin C and vitamin B6 in food samples using ZrO 2 nanoparticle/ionic liquids carbon paste electrode Food Anal. Methods 2015 8 549 557 10.1007/s12161-014-9926-3 

  11. 11. Khaleghi F. Arab Z. Gupta V.K. Ganjali M.R. Norouzi P. Atar N. Yola M.L. Fabrication of novel electrochemical sensor for determination of vitamin C in the presence of vitamin B9 in food and pharmaceutical samples J. Mol. Liq. 2016 221 666 672 10.1016/j.molliq.2016.06.061 

  12. 12. Khaleghi F. Elyasi Irai A. Sadeghi R. Gupta V.K. Wen Y. A fast strategy for determination of vitamin B 9 in food and pharmaceutical samples using an ionic liquid-modified nanostructure voltammetric sensor Sensors 2016 16 747 10.3390/s16060747 27231909 

  13. 13. Karimi-Maleh H. Tahernejad-Javazmi F. Atar N. Yola M.L. Gupta V.K. Ensafi A.A. A novel DNA biosensor based on a pencil graphite electrode modified with polypyrrole/functionalized multiwalled carbon nanotubes for determination of 6-mercaptopurine anticancer drug Ind. Eng. Chem. Res. 2015 54 3634 3639 10.1021/ie504438z 

  14. 14. Ensafi A.A. Karimi-Maleh H. Mallakpour S. A new strategy for the selective determination of glutathione in the presence of nicotinamide adenine dinucleotide (NADH) using a novel modified carbon nanotube paste electrode Colloids Surf. B Biointerfaces 2013 104 186 193 10.1016/j.colsurfb.2012.12.011 23314609 

  15. 15. Karimi-Maleh H. Moazampour M. Ensafi A.A. Mallakpour S. Hatami M. An electrochemical nanocomposite modified carbon paste electrode as a sensor for simultaneous determination of hydrazine and phenol in water and wastewater samples Environ. Sci. Pollut. Res. Int. 2014 21 5879 5888 10.1007/s11356-014-2529-0 24448883 

  16. 16. Gupta V.K. Atar N. Yola M.L. Üstündağ Z. Uzun L. A novel magnetic Fe@Au core-shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds Water Res. 2014 48 210 217 10.1016/j.watres.2013.09.027 24112627 

  17. 17. Sanghavi B.J. Mobin S.M. Mathur P. Lahiri G.K. Srivastava A.K. Biomimetic sensor for certain catecholamines employing copper (II) complex and silver nanoparticle modified glassy carbon paste electrode Biosens. Bioelectron. 2013 39 124 132 10.1016/j.bios.2012.07.008 22841445 

  18. 18. Yola M.L. Atar N. Eren T. Karimi-Maleh H. Wang S. Sensitive and selective determination of aqueous triclosan based on gold nanoparticles on polyoxometalate/reduced graphene oxide nanohybrid RSC Adv. 2015 5 65953 65962 10.1039/C5RA07443F 

  19. 19. Sanghavi B.J. Sitaula S. Griep M.H. Karna S.P. Ali M.F. Swami N.S. Real-time electrochemical monitoring of adenosine triphosphate in the picomolar to micromolar range using graphene-modified electrodes Anal. Chem. 2013 85 8158 8165 10.1021/ac4011205 23875581 

  20. 20. Zhao Y. Gao Y. Zhan D. Liu H. Zhao Q. Kou Y. Shao Y. Li M. Zhuang Q. Zhu Z. Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode Talanta 2005 66 51 57 10.1016/j.talanta.2004.09.019 18969961 

  21. 21. Beitollahi H. Raoof J.B. Karimi-Maleh H. Hosseinzadeh R. Electrochemical behavior of isoproterenol in the presence of uric acid and folic acid at a carbon paste electrode modified with 2,7-bis(ferrocenyl ethyl)fluoren-9-one and carbon nanotubes J. Solid State Electrochem. 2012 16 1701 1707 10.1007/s10008-011-1578-2 

  22. 22. Fouladgar M. Karimi-Maleh H. Ionic liquid/multiwall carbon nanotubes paste electrode for square wave voltammetric determination of methyldopa Ionics 2013 19 1163 1170 10.1007/s11581-012-0832-7 

  23. 23. Ensafi A.A. Karimi Maleh H. A multiwall carbon nanotubes paste electrode as a sensor and ferrocenemonocarboxylic acid as a mediator for electrocatalytic determination of isoproterenol Int. J. Electrochem. Sci. 2010 5 1484 1495 

  24. 24. Sun W. Yang M. Jiao K. Electrocatalytic oxidation of dopamine at an ionic liquid modified carbon paste electrode and its analytical application Anal. Bioanal. Chem. 2007 389 1283 1291 10.1007/s00216-007-1518-2 17701400 

  25. 25. Safavi A. Maleki N. Moradlou O. Tajabadi F. Simultaneous determination of dopamine, ascorbic acid, and uric acid using carbon ionic liquid electrode Anal. Biochem. 2006 359 224 229 10.1016/j.ab.2006.09.008 17069745 

  26. 26. Kuskur C.M. Swamy B.E.K. Jayadevappa H. Electrochemical behaviour of norepinephrine in the presence of paracetamol and folic acid at poly (Congo red) modified carbon paste electrode Anal. Bioanal. Electrochem. 2018 10 658 674 

  27. 27. Malhotra S. Tang Y. Varshney P.K. Non-enzymatic glucose sensor based on electrodeposition of platinum particles on polyaniline modified Pt electrode Anal. Bioanal. Electrochem. 2018 10 699 715 

  28. 28. Khalilzadeh M.A. Karimi-Maleh H. Amiri A. Gholami F. Determination of captopril in patient human urine using ferrocenemonocarboxylic acid modified carbon nanotubes paste electrode Chin. Chem. Lett. 2010 21 1467 1470 10.1016/j.cclet.2010.06.020 

  29. 29. Elyasi M. Khalilzadeh M.A. Karimi-Maleh H. High sensitive voltammetric sensor based on Pt/CNTs nanocomposite modified ionic liquid carbon paste electrode for determination of Sudan I in food samples Food Chem. 2013 141 4311 4317 10.1016/j.foodchem.2013.07.020 23993620 

  30. 30. Bijad M. Karimi-Maleh H. Khalilzadeh M.A. Application of ZnO/CNTs nanocomposite ionic liquid paste electrode as a sensitive voltammetric sensor for determination of ascorbic acid in food samples Food Anal. Methods 2013 6 1639 1647 10.1007/s12161-013-9585-9 

  31. 31. Najafi M. Khalilzadeh M.A. Karimi-Maleh H. A new strategy for determination of bisphenol A in the presence of Sudan I using a ZnO/CNTs/ionic liquid paste electrode in food samples Food Chem. 2014 158 125 131 10.1016/j.foodchem.2014.02.082 24731323 

  32. 32. Sheikholeslami M. Solidification of NEPCM under the effect of magnetic field in a porous thermal energy storage enclosure using CuO nanoparticles J. Mol. Liq. 2018 263 303 315 10.1016/j.molliq.2018.04.144 

  33. 33. Sheikholeslami M. Numerical modeling of nano enhanced PCM solidification in an enclosure with metallic fin J. Mol. Liq. 2018 259 424 438 10.1016/j.molliq.2018.03.006 

  34. 34. .Sheikholeslami M. Numerical investigation for CuO-H 2 O nanofluid flow in a porous channel with magnetic field using mesoscopic method J. Mol. Liq. 2018 249 739 746 10.1016/j.molliq.2017.11.069 

  35. 35. Arabali V. Ebrahimi M. Abbasghorbani M. Gupta V.K. Farsi M. Ganjali M. Karimi F. Electrochemical determination of vitamin C in the presence of NADH using a CdO nanoparticle/ionic liquid modified carbon paste electrode as a sensor J. Mol. Liq. 2016 213 312 316 10.1016/j.molliq.2015.10.001 

  36. 36. Goyal R.N. Gupta V.K. Chatterjee S. Simultaneous determination of adenosine and inosine using single-wall carbon nanotubes modified pyrolytic graphite electrode Talanta 2008 76 662 668 10.1016/j.talanta.2008.04.011 18585336 

  37. 37. Karimi-Maleh H. Tahernejad-Javazmi F. Ensafi A.A. Moradi R. Mallakpour S. Beitollahi H. A high sensitive biosensor based on fept/cnts nanocomposite/ N -(4-hydroxyphenyl)-3,5-dinitrobenzamide modified carbon paste electrode for simultaneous determination of glutathione and piroxicam Biosens. Bioelectron. 2014 60 1 7 10.1016/j.bios.2014.03.055 24755294 

  38. 38. Karimi-Maleh H. Biparva P. Hatami M. A novel modified carbon paste electrode based on nio/cnts nanocomposite and (9,10-dihydro-9,10-ethanoanthracene-11,12-dicarboximido)-4-ethylbenzene-1,2-diol as a mediator for simultaneous determination of cysteamine, nicotinamide adenine dinucleotide and folic acid Biosens. Bioelectron. 2013 48 270 275 23707873 

  39. 39. Karimi-Maleh H. Shojaei A.F. Tabatabaeian K. Karimi F. Shakeri S. Moradi R. Simultaneous determination of 6-mercaptopruine, 6-thioguanine and dasatinib as three important anticancer drugs using nanostructure voltammetric sensor employing Pt/MWCNTs and 1-butyl-3-methylimidazolium hexafluoro phosphate Biosens. Bioelectron. 2016 86 879 884 10.1016/j.bios.2016.07.086 27494812 

  40. 40. Sanati A.L. Karimi-Maleh H. Abbasghorbani M. Synthesis of NiO nanoparticle and application of its in the preparation of electrochemical sensor for voltammetric determination of Nalbuphine J. Appl. Chem. 2015 9 35 40 

  41. 41. Sanati A.L. Faridbod F. Ganjali M.R. Synergic effect of graphene quantum dots and room temperature ionic liquid for the fabrication of highly sensitive voltammetric sensor for levodopa determination in the presence of serotonin J. Mol. Liq. 2017 241 316 320 10.1016/j.molliq.2017.04.123 

  42. 42. Sanati A.L. Faridbod F. Electrochemical Determination of Methyldopa by Graphene Quantum Dot/1-butyl-3-methylimidazolium hexafluoro phosphate Nanocomposite Electrode Int. J. Electrochem. Sci. 2017 12 7997 8005 10.20964/2017.09.71 

  43. 43. Ashjari M. Karimi-Maleh H. Ahmadpour F. Shabani-Nooshabadi M. Sadrnia A. Khalilzadeh M.A. Voltammetric analysis of mycophenolate mofetil in pharmaceutical samples via electrochemical nanostructure based sensor modified with ionic liquid and MgO/SWCNTs J. Taiwan Inst. Chem. Eng. 2017 80 989 996 10.1016/j.jtice.2017.08.046 

  44. 44. Alavi-Tabari S.A.R. Khalilzadeh M.A. Karimi-Maleh H. Zareyee D. An amplified platform nanostructure sensor for the analysis of epirubicin in the presence of topotecan as two important chemotherapy drugs for breast cancer therapy New J. Chem. 2018 42 3828 3832 10.1039/C7NJ04430E 

  45. 45. Alavi-Tabari S.A.R. Khalilzadeh M.A. Karimi-Maleh H. Simultaneous determination of doxorubicin and dasatinib as two breast anticancer drugs uses an amplified sensor with ionic liquid and ZnO nanoparticle J. Electroanal. Chem. 2018 811 84 88 10.1016/j.jelechem.2018.01.034 

  46. 46. Van Assendelft H. Adverse drug reactions checklist Br. Med. J. 1987 294 576 577 10.1136/bmj.294.6571.576-d 

  47. 47. Cheraghi S. Taher M.A. Karimi-Maleh H. Highly sensitive square wave voltammetric sensor employing CdO/SWCNTs and room temperature ionic liquid for analysis of vanillin and folic acid in food samples J. Food Compos. Anal. 2017 62 254 259 10.1016/j.jfca.2017.06.006 

  48. 48. Khalilzadeh M.A. Arab Z. High sensitive nanostructure square wave voltammetric sensor for determination of vanillin in food samples Curr. Anal. Chem. 2017 13 81 86 10.2174/1573411012666160805145331 

  49. 49. Jiang L. Ding Y. Jiang F. Li L. Mo F. Electrodeposited nitrogen-doped graphene/carbon nanotubes nanocomposite as enhancer for simultaneous and sensitive voltammetric determination of caffeine and vanillin Anal. Chim. Acta 2014 833 22 28 10.1016/j.aca.2014.05.010 24909770 

  50. 50. Yardım Y. Gülcan M. Şentürk Z. Determination of vanillin in commercial food product by adsorptive stripping voltammetry using a boron-doped diamond electrode Food Chem. 2013 141 1821 1827 10.1016/j.foodchem.2013.04.085 23870896 

  51. 51. Deng P. Xu Z. Zeng R. Ding C. Electrochemical behavior and voltammetric determination of vanillin based on an acetylene black paste electrode modified with grapheme-polyvinylpyrrolidone composite film Food Chem. 2015 180 156 163 10.1016/j.foodchem.2015.02.035 25766813 

  52. 52. Sanati A. Karimi-Maleh H. Badiei A. Biparva P. Ensafi A.A. A voltammetric sensor based on NiO/CNTs ionic liquid carbon paste electrode for determination of morphine in the presence of diclofenac Mater. Sci. Eng. C 2014 35 379 385 10.1016/j.msec.2013.11.031 24411391 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로