$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Rigid polyurethane foams modified with thermoset polyester-glass fiber composite waste

Polymer testing, v.81, 2020년, pp.106190 -   

Barczewski, Mateusz (Poznan University of Technology, Faculty of Mechanical Engineering and Management, Institute of Materials Technology, Polymer Processing Division) ,  Kurańska, Maria (Cracow University of Technology, Department of Chemistry and Technology of Polymers) ,  Sałasińska, Kamila (Central Institute for Labour Protection –) ,  Michałowski, Sławomir (National Research Institute, Department of Chemical, Biological and Aerosol Hazards) ,  Prociak, Aleksander (Poznan University of Technology, Faculty of Mechanical Engineering and Management, Institute of Materials Technology, Polymer Processing Division) ,  Uram, Katarzyna (Poznan University of Technology, Faculty of Mechanical Engineering and Management, Institute of Materials Technology, Polymer Processing Division) ,  Lewandowski, Krzysztof (Poznan University of Technology, Faculty of Mechanical Engineering and Management, Institute of Materials Technology, Polymer Processing Division)

Abstract AI-Helper 아이콘AI-Helper

Abstract This paper summarizes our work aimed at applying thermoset polyester composite waste in the preparation of polyurethane (PU) foams according to the circular economy assumptions. In the study we analyzed the influence of ground bulk moulding composites (BMC) used as a filler on the foaming ...

주제어

참고문헌 (61)

  1. Energy Malinauskaite 141 2013 2017 10.1016/j.energy.2017.11.128 Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe 

  2. J. Chem. Technol. Biotechnol. De Marco 69 187 1997 10.1002/(SICI)1097-4660(199706)69:2<187::AID-JCTB710>3.0.CO;2-T Recycling of the products obtained in the pyrolysis of fibre-glass polyester SMC 

  3. J. Thermoplast. Compos. Mater. DeRosa 18 333 2005 10.1177/0892705705049560 Strength and microscopic investigation of unsaturated polyester BMC reinforced with SMC-recyclate 

  4. Compos. Appl. Sci. Manuf. Dumont 38 353 2007 10.1016/j.compositesa.2006.03.010 Compression moulding of SMC: in situ experiments, modelling and simulation 

  5. J. Adv. Res. Barczewski 7 2016 10.1016/j.jare.2016.01.001 Application of waste bulk moulded composite (BMC) as a filler for isotactic polypropylene composites 

  6. J. Polym. Eng. Matykiewicz 35 2015 10.1515/polyeng-2014-0330 Morphology and thermomechanical properties of epoxy composites highly filled with waste bulk molding compounds (BMC) 

  7. Adv. Polym. Technol. Lewandowski 1 2019 10.1155/2019/8960503 Recycled glass fibres from wind turbines as a filler for poly(vinyl chloride) 

  8. Polym. Test. Członka 68 135 2018 10.1016/j.polymertesting.2018.04.006 Rigid polyurethane foams reinforced with industrial potato protein 

  9. Polimery Prociak 62 353 2017 10.14314/polimery.2017.353 Porous polyurethane plastics synthetized using bio-polyols from renewable raw materials 

  10. Renew. Sustain. Energy Rev. Hejna 66 449 2016 10.1016/j.rser.2016.08.020 Potential applications of crude glycerol in polymer technology-Current state and perspectives 

  11. J. Polym. Environ. Hejna 26 3334 2018 10.1007/s10924-018-1217-4 Two-step conversion of crude glycerol generated by biodiesel production into biopolyols: synthesis, structural and physical chemical characterization 

  12. Eur. Polym. J. Piszczyk 48 1726 2012 10.1016/j.eurpolymj.2012.07.001 Preparation and characterization of rigid polyurethane-polyglycerol nanocomposite foams 

  13. Prog. Org. Coat. Jutrzenka Trzebiatowska 115 41 2018 10.1016/j.porgcoat.2017.11.008 The changes of crosslink density of polyurethanes synthesised with using recycled component. Chemical structure and mechanical properties investigations 

  14. Polym. Degrad. Stab. Calvo-Correas 144 411 2017 10.1016/j.polymdegradstab.2017.09.001 Thermoplastic polyurethanes with glycolysate intermediates from polyurethane waste recycling 

  15. Datta 323 2017 Polyurethane Polym Recycling of polyurethanes 

  16. Arab. J. Chem. Reghunadhan 2018 Polyurethane glycolysate from industrial waste recycling to develop low dielectric constant, thermally stable materials suitable for the electronics 

  17. Appl. Surf. Sci. Reghunadhan 442 403 2018 10.1016/j.apsusc.2018.02.128 Toughness augmentation by fibrillation and yielding in nanostructured blends with recycled polyurethane as a modifier 

  18. Ind. Crops Prod. Kairytė 112 119 2018 10.1016/j.indcrop.2017.11.027 Rapeseed-based polyols and paper production waste sludge in polyurethane foam: physical properties and their prediction models 

  19. Compos. Appl. Sci. Manuf. Caglayan 115 187 2018 10.1016/j.compositesa.2018.09.019 The effect of CNT-reinforced polyurethane foam cores to flexural properties of sandwich composites 

  20. RSC Adv. Jyoti 6 3997 2016 10.1039/C5RA25561A Dynamic mechanical properties of multiwall carbon nanotube reinforced ABS composites and their correlation with entanglement density, adhesion, reinforcement and C factor 

  21. Compos. Sci. Technol. Pothan 63 283 2003 10.1016/S0266-3538(02)00254-3 Dynamic mechanical analysis of banana fiber reinforced polyester composites 

  22. International Commission on Illumination 1978 Recommendations on Uniform Color Spaces, Color-Difference Equations, Psychometric Color Terms 

  23. Materials (Basel) Grząbka-Zasadzińska 11 2257 2018 10.3390/ma11112257 Thermal and mechanical properties of silica - lignin/polylactide composites subjected to biodegradation 

  24. Polym. Int. Marcovich 66 1522 2017 10.1002/pi.5408 The effect of different palm oil-based bio-polyols on foaming process and selected properties of porous polyurethanes 

  25. Ind. Crops Prod. Marcovich 102 88 2017 10.1016/j.indcrop.2017.03.025 Open cell semi-rigid polyurethane foams synthesized using palm oil-based bio-polyol 

  26. Ind. Crops Prod. Formela 108 844 2017 10.1016/j.indcrop.2017.07.047 Structural, thermal and physico-mechanical properties of polyurethane/brewers' spent grain composite foams modified with ground tire rubber 

  27. Ind. Crops Prod. Kurańska 95 316 2017 10.1016/j.indcrop.2016.10.039 Innovative porous polyurethane-polyisocyanurate foams based on rapeseed oil and modified with expandable graphite 

  28. Polimery Kurańska 61 625 2016 10.14314/polimery.2016.625 Microcellulose as a natural filler in polyurethane foams based on the biopolyol from rapeseed oil 

  29. Polymer (Guildf) Cao 46 775 2005 10.1016/j.polymer.2004.11.028 Polyurethane/clay nanocomposites foams: processing, structure and properties 

  30. Polymer (Guildf) Zeng 51 655 2010 10.1016/j.polymer.2009.12.032 Synthesis and processing of PMMA carbon nanotube nanocomposite foams 

  31. Polym. Eng. Sci. Han 43 1261 2003 10.1002/pen.10107 Extrusion of polystyrene nanocomposite foams with supercritical CO2 

  32. J. Macromol. Sci. Part B. Widya 44 897 2005 10.1080/00222340500364809 Nanoclay‐modified rigid polyurethane foam 

  33. Compos. Appl. Sci. Manuf. Madaleno 44 1 2013 10.1016/j.compositesa.2012.08.015 Processing and characterization of polyurethane nanocomposite foam reinforced with montmorillonite-carbon nanotube hybrids 

  34. Ind. Crops Prod. Luo 47 13 2013 10.1016/j.indcrop.2013.01.040 Lignin as a reactive reinforcing filler for water-blown rigid biofoam composites from soy oil-based polyurethane 

  35. Polym. Eng. Sci. Mosiewicki 49 685 2009 10.1002/pen.21300 Polyurethanes from tung oil: polymer characterization and composites 

  36. J. Compos. Mater. Mosiewicki 43 3057 2009 10.1177/0021998309345342 Polyurethane foams obtained from Castor oil-based polyol and filled with wood flour 

  37. Ind. Crops Prod. Septevani 66 16 2015 10.1016/j.indcrop.2014.11.053 A systematic study substituting polyether polyol with palm kernel oil based polyester polyol in rigid polyurethane foam 

  38. Polym. Test. Członka 69 225 2018 10.1016/j.polymertesting.2018.05.013 Rigid polyurethane foams reinforced with solid waste generated in leather industry 

  39. Ind. Crops Prod. Kurańska 74 849 2015 10.1016/j.indcrop.2015.06.006 Polyurethane-polyisocyanurate foams modified with hydroxyl derivatives of rapeseed oil 

  40. Przem. Chem. Czarnecka-Komorowska 93 1997 2014 Effect of [3-(2-aminoethyl) amino] propyl-heptaisobutyl-polysilsesquioxane nanoparticles on thermal stability and color of polyoxymethylene and polyamide 6 

  41. J. Food Process. Eng. Asokapandian 39 692 2016 10.1111/jfpe.12261 Optimization of foaming properties and foam mat drying of muskmelon using soy protein 

  42. Polym. Test. Aranguren 31 7 2012 10.1016/j.polymertesting.2011.09.001 Biodegradation of a vegetable oil based polyurethane and wood flour composites 

  43. Polimery Bociaga 61 544 2016 10.14314/polimery.2016.544 Influence of polymer processing parameters and coloring agents on gloss and color of acrylonitrile-butadiene-styrene terpolymer moldings 

  44. Compos. Sci. Technol. Saint-Michel 66 2709 2006 10.1016/j.compscitech.2006.03.008 Mechanical properties of high density polyurethane foams: II Effect of the filler size 

  45. J. Reinf. Plast. Compos. Rahman 31 1247 2012 10.1177/0731684412456445 Polypropylene/glass fiber/nanoclay hybrid composites: morphological, thermal, dynamic mechanical and impact behaviors 

  46. Polymers (Basel) Strąkowska 11 1092 2019 10.3390/polym11071092 POSS compounds as modifiers for rigid polyurethane foams (composites) 

  47. BMC Polym. Process. Matykiewicz 394 2014 Flammability and thermal properties of epoxy composites filled with waste polyester 

  48. Polym. Degrad. Stab. Tibiletti 96 67 2011 10.1016/j.polymdegradstab.2010.10.015 Thermal degradation and fire behaviour of unsaturated polyesters filled with metallic oxides 

  49. J. Anal. Appl. Pyrolysis López 93 104 2012 10.1016/j.jaap.2011.10.003 Thermolysis of fibreglass polyester composite and reutilisation of the glass fibre residue to obtain a glass-ceramic material 

  50. Polym. Test. Ferreira 25 1091 2006 10.1016/j.polymertesting.2006.07.012 Thermogravimetric analysis of aluminised E-glass fibre reinforced unsaturated polyester composites 

  51. Materials (Basel) Bautista 11 22 2017 10.3390/ma11010022 Thermal degradation mechanism of a thermostable polyester stabilized with an open-cage oligomeric silsesquioxane 

  52. J. Polym. Res. Li 24 1 2017 10.1007/s10965-017-1306-4 Effect of zeolites on morphology and properties of water-blown semi-rigid ammonium polyphosphate intumescent flame-retarding polyurethane foam 

  53. Polimery/Polymers Mizera 61 307 2016 Polyurethane composites with mixture of carbon fibers and glass frit 

  54. Chromatographia Simon 25 99 1988 10.1007/BF02259024 Thermal stability of polyurethanes 

  55. Polymers (Basel) Günther 10 1166 2018 10.3390/polym10101166 Fire phenomena of rigid polyurethane foams 

  56. J. Therm. Anal. Calorim. Michałowski 130 155 2017 10.1007/s10973-017-6391-4 Thermal stability and flammability of polyurethane foams chemically reinforced with POSS 

  57. J. Hazard Mater. Jiao 332 176 2017 10.1016/j.jhazmat.2017.02.019 Fire hazard reduction of hollow glass microspheres in thermoplastic polyurethane composites 

  58. Polym. Degrad. Stab. Sacristán 95 1269 2010 10.1016/j.polymdegradstab.2010.03.015 Cone calorimetry studies of fire retardant soybean-oil-based copolymers containing silicon or boron: comparison of additive and reactive approaches 

  59. J. Chem. Georgieva 2013 1 2013 10.1155/2013/872981 Non-isothermal degradation kinetics of CaCO 3 from different origin 

  60. Polimery Zatorski 61 815 2016 10.14314/polimery.2016.815 Combustibility studies of unsaturated polyester resins modified by nanoparticles 

  61. Polimery/Polymers Konecki 51 293 2006 Analiza zasiȩgu widzialności w dymie powstałym w czasie spalania materiałów poliestrowych 

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로