$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Epigenetic Modification as a Regulatory Mechanism for Spatiotemporal Dynamics of ANO1 Expression in Salivary Glands 원문보기

International journal of molecular sciences, v.20 no.24, 2019년, pp.6298 -   

Shin, Yonghwan (Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul 110-749, Korea) ,  Lee, Sang-Woo (yonghwas@usc.edu (Y.S.)) ,  Namkoong, Eun (goodman23@snu.ac.kr (S.-W.L.)) ,  An, Woojin (eunnamkoong@snu.ac.kr (E.N.)) ,  Lee, Jong-Ho (Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul 110-749, Korea) ,  Brown, Peter D (yonghwas@usc.edu (Y.S.)) ,  Park, Kyungpyo (goodman23@snu.ac.kr (S.-W.L.))

Abstract AI-Helper 아이콘AI-Helper

Anoctamin1 (ANO1), a calcium activated chloride channel, is known to play a critical role in salivary secretion. In the salivary gland, ANO1 is expressed exclusively in the acinar cells, with no expression in the ductal cells. However, the mechanisms that determine this distinctive cell type-depende...

주제어

참고문헌 (42)

  1. 1. Mukaibo T. Munemasa T. George A.T. Tran D.T. Gao X. Herche J.L. Masaki C. Shull G.E. Soleimani M. Melvin J.E. The apical anion exchanger slc26a6 promotes oxalate secretion by murine submandibular gland acinar cells J. Biol. Chem. 2018 293 6259 6268 10.1074/jbc.RA118.002378 29530983 

  2. 2. Jang Y. Oh U. Anoctamin 1 in secretory epithelia Cell Calcium 2014 55 355 361 10.1016/j.ceca.2014.02.006 24636668 

  3. 3. Finegersh A. Kulich S. Guo T. Favorov A.V. Fertig E.J. Danilova L.V. Gaykalova D.A. Califano J.A. Duvvuri U. DNA methylation regulates tmem16a/ano1 expression through multiple cpg islands in head and neck squamous cell carcinoma Sci. Rep. 2017 7 15173 10.1038/s41598-017-15634-9 29123240 

  4. 4. Smith Z.D. Meissner A. DNA methylation: Roles in mammalian development Nat. Rev. Genet. 2013 14 204 220 10.1038/nrg3354 23400093 

  5. 5. Bird A. DNA methylation patterns and epigenetic memory Genes Dev. 2002 16 6 21 10.1101/gad.947102 11782440 

  6. 6. Keshet I. Lieman-Hurwitz J. Cedar H. DNA methylation affects the formation of active chromatin Cell 1986 44 535 543 10.1016/0092-8674(86)90263-1 3456276 

  7. 7. Laird P.W. Jaenisch R. The role of DNA methylation in cancer genetics and epigenetics Annu. Rev. Genet. 1996 30 441 464 10.1146/annurev.genet.30.1.441 8982461 

  8. 8. Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development Nature 2007 447 425 432 10.1038/nature05918 17522676 

  9. 9. Avrahami D. Kaestner K.H. Epigenetic Regulation of Pancreas Development and Function Seminars in cell & developmental biology Elsevier Amsterdam, The Netherlands 2012 693 700 

  10. 10. Keil K.P. Abler L.L. Mehta V. Altmann H.M. Laporta J. Plisch E.H. Suresh M. Hernandez L.L. Vezina C.M. DNA methylation of e-cadherin is a priming mechanism for prostate development Dev. Biol. 2014 387 142 153 10.1016/j.ydbio.2014.01.020 24503032 

  11. 11. Bonner-Weir S. Baxter L.A. Schuppin G.T. Smith F.E. A second pathway for regeneration of adult exocrine and endocrine pancreas: A possible recapitulation of embryonic development Diabetes 1993 42 1715 1720 10.2337/diab.42.12.1715 8243817 

  12. 12. Jensen J.N. Cameron E. Garay M.V.R. Starkey T.W. Gianani R. Jensen J. Recapitulation of elements of embryonic development in adult mouse pancreatic regeneration Gastroenterology 2005 128 728 741 10.1053/j.gastro.2004.12.008 15765408 

  13. 13. Imokawa Y. Yoshizato K. Expression of sonic hedgehog gene in regenerating newt limb blastemas recapitulates that in developing limb buds Proc. Natl. Acad. Sci. USA 1997 94 9159 9164 10.1073/pnas.94.17.9159 9256452 

  14. 14. Pringle S. Van Os R. Coppes R.P. Concise review: Adult salivary gland stem cells and a potential therapy for xerostomia Stem Cells 2013 31 613 619 10.1002/stem.1327 23335219 

  15. 15. Emmerson E. May A.J. Nathan S. Cruz-Pacheco N. Lizama C.O. Maliskova L. Zovein A.C. Shen Y. Muench M.O. Knox S.M. Sox2 regulates acinar cell development in the salivary gland Elife 2017 6 e26620 10.7554/eLife.26620 28623666 

  16. 16. Ikeura K. Kawakita T. Tsunoda K. Nakagawa T. Tsubota K. Characterization of long-term cultured murine submandibular gland epithelial cells PLoS ONE 2016 11 e0147407 10.1371/journal.pone.0147407 26800086 

  17. 17. Shin Y.-H. Lee S.-W. Kim M. Choi S.-Y. Cong X. Yu G.-Y. Park K. Epigenetic regulation of cftr in salivary gland Biochem. Biophys. Res. Commun. 2016 481 31 37 10.1016/j.bbrc.2016.11.023 27833020 

  18. 18. Hoffman M.P. Kibbey M.C. Letterio J.J. Kleinman H.K. Role of laminin-1 and tgf-beta 3 in acinar differentiation of a human submandibular gland cell line (hsg) J. Cell Sci. 1996 109 2013 2021 8856497 

  19. 19. Szlavik V. Vag J. Marko K. Demeter K. Madarasz E. Olah I. Zelles T. O’Connell B.C. Varga G. Matrigel-induced acinar differentiation is followed by apoptosis in hsg cells J. Cell. Biochem. 2008 103 284 295 10.1002/jcb.21404 17541949 

  20. 20. Maria O.M. Maria O. Liu Y. Komarova S.V. Tran S.D. Matrigel improves functional properties of human submandibular salivary gland cell line Int. J. Biochem. Cell Biol. 2011 43 622 631 10.1016/j.biocel.2011.01.001 21216302 

  21. 21. Choi J.Y. Muallem D. Kiselyov K. Lee M.G. Thomas P.J. Muallem S. Aberrant cftr-dependent hco-3 transport in mutations associated with cystic fibrosis Nature 2001 410 94 10.1038/35065099 11242048 

  22. 22. Namkung W. Yao Z. Finkbeiner W.E. Verkman A. Small-molecule activators of tmem16a, a calcium-activated chloride channel, stimulate epithelial chloride secretion and intestinal contraction FASEB J. 2011 25 4048 4062 10.1096/fj.11-191627 21836025 

  23. 23. Lei Y. Zhang X. Su J. Jeong M. Gundry M.C. Huang Y.-H. Zhou Y. Li W. Goodell M.A. Targeted DNA methylation in vivo using an engineered dcas9-mq1 fusion protein Nat. Commun. 2017 8 16026 10.1038/ncomms16026 28695892 

  24. 24. Nogawa H. Takahashi Y. Substitution for mesenchyme by basement-membrane-like substratum and epidermal growth factor in inducing branching morphogenesis of mouse salivary epithelium Development 1991 112 855 861 1935691 

  25. 25. Kleinman H.K. McGarvey M.L. Liotta L.A. Robey P.G. Tryggvason K. Martin G.R. Isolation and characterization of type iv procollagen, laminin, and heparan sulfate proteoglycan from the ehs sarcoma Biochemistry 1982 21 6188 6193 10.1021/bi00267a025 6217835 

  26. 26. Hayashi T. Lombaert I.M. Hauser B.R. Patel V.N. Hoffman M.P. Exosomal microrna transport from salivary mesenchyme regulates epithelial progenitor expansion during organogenesis Dev. Cell 2017 40 95 103 10.1016/j.devcel.2016.12.001 28041903 

  27. 27. Yang Y.D. Cho H. Koo J.Y. Tak M.H. Cho Y. Shim W.-S. Park S.P. Lee J. Lee B. Kim B.-M. Tmem16a confers receptor-activated calcium-dependent chloride conductance Nature 2008 455 1210 1215 10.1038/nature07313 18724360 

  28. 28. Caputo A. Caci E. Ferrera L. Pedemonte N. Barsanti C. Sondo E. Pfeffer U. Ravazzolo R. Zegarra-Moran O. Galietta L.J. Tmem16a, a membrane protein associated with calcium-dependent chloride channel activity Science 2008 322 590 594 10.1126/science.1163518 18772398 

  29. 29. Schroeder B.C. Cheng T. Jan Y.N. Jan L.Y. Expression cloning of tmem16a as a calcium-activated chloride channel subunit Cell 2008 134 1019 1029 10.1016/j.cell.2008.09.003 18805094 

  30. 30. Sciubba J.J. Goldenberg D. Oral complications of radiotherapy Lancet Oncol. 2006 7 175 183 10.1016/S1470-2045(06)70580-0 16455482 

  31. 31. Dirix P. Nuyts S. Van den Bogaert W. Radiation-induced xerostomia in patients with head and neck cancer: A literature review Cancer Interdiscip. Int. J. Am. Cancer Soc. 2006 107 2525 2534 10.1002/cncr.22302 

  32. 32. Stephens L.C. Ang K.K. Schultheiss T.E. King G.K. Brock W.A. Peters L.J. Target cell and mode of radiation injury in rhesus salivary glands Radiother. Oncol. 1986 7 165 174 10.1016/S0167-8140(86)80096-2 3786822 

  33. 33. Baum B.J. Zheng C. Cotrim A.P. Goldsmith C.M. Atkinson J.C. Brahim J.S. Chiorini J.A. Voutetakis A. Leakan R.A. Van Waes C. Transfer of the aqp1 cdna for the correction of radiation-induced salivary hypofunction Biochim. Biophys. Acta (BBA)-Biomembr. 2006 1758 1071 1077 10.1016/j.bbamem.2005.11.006 16368071 

  34. 34. Gao R. Yan X. Zheng C. Goldsmith C.M. Afione S. Hai B. Xu J. Zhou J. Zhang C. Chiorini J.A. Aav2-mediated transfer of the human aquaporin-1 cdna restores fluid secretion from irradiated miniature pig parotid glands Gene Ther. 2011 18 38 10.1038/gt.2010.128 20882054 

  35. 35. Momparler R. Frith C. Toxicology in mice of the antileukemic agent 5-aza-2’-deoxycytidine Drug Chem. Toxicol. 1981 4 373 381 10.3109/01480548109017828 6178576 

  36. 36. Pushpakumar S. Kundu S. Narayanan N. Sen U. DNA hypermethylation in hyperhomocysteinemia contributes to abnormal extracellular matrix metabolism in the kidney FASEB J. 2015 29 4713 4725 10.1096/fj.15-272443 26224753 

  37. 37. Nelson J. Manzella K. Baker O.J. Current cell models for bioengineering a salivary gland: A mini-review of emerging technologies Oral Dis. 2013 19 236 244 10.1111/j.1601-0825.2012.01958.x 22805753 

  38. 38. Royce L.S. Kibbey M.C. Mertz P. Kleinman H.K. Baum B.J. Human neoplastic submandibular intercalated duct cells express an acinar phenotype when cultured on a basement membrane matrix Differentiation 1993 52 247 255 10.1111/j.1432-0436.1993.tb00637.x 7683292 

  39. 39. Nagy K. Szlavik V. Racz G. Ovari G. Vag J. Varga G. Human submandibular gland (hsg) cell line as a model for studying salivary gland ca 2+ signalling mechanisms Acta Physiol. Hung. 2007 94 301 313 10.1556/APhysiol.94.2007.4.2 18038758 

  40. 40. Yu H. Turner J.T. Functional studies in the human submandibular duct cell line, hsg-pa, suggest a second salivary gland receptor subtype for nucleotides J. Pharmacol. Exp. Ther. 1991 259 1344 1350 1762082 

  41. 41. Kwon H.R. Nelson D.A. DeSantis K.A. Morrissey J.M. Larsen M. Endothelial cell regulation of salivary gland epithelial patterning Development 2017 144 211 220 10.1242/dev.142497 28096213 

  42. 42. Xu X. Diaz J. Zhao H. Muallem S. Characterization, localization and axial distribution of ca2+ signalling receptors in the rat submandibular salivary gland ducts J. Physiol. 1996 491 647 662 10.1113/jphysiol.1996.sp021246 8815200 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로