$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Neuromorphic Stereo Vision: A Survey of Bio-Inspired Sensors and Algorithms 원문보기

Frontiers in neurorobotics, v.13, 2019년, pp.28 -   

Steffen, Lea (FZI Research Center for Information Technology , Karlsruhe , Germany) ,  Reichard, Daniel (FZI Research Center for Information Technology , Karlsruhe , Germany) ,  Weinland, Jakob (FZI Research Center for Information Technology , Karlsruhe , Germany) ,  Kaiser, Jacques (FZI Research Center for Information Technology , Karlsruhe , Germany) ,  Roennau, Arne (FZI Research Center for Information Technology , Karlsruhe , Germany) ,  Dillmann, Rüdiger (FZI Research Center for Information Technology , Karlsruhe , Germany)

Abstract AI-Helper 아이콘AI-Helper

Any visual sensor, whether artificial or biological, maps the 3D-world on a 2D-representation. The missing dimension is depth and most species use stereo vision to recover it. Stereo vision implies multiple perspectives and matching, hence it obtains depth from a pair of images. Algorithms for stere...

주제어

참고문헌 (113)

  1. Adachi-Usami E. Lehmann D. ( 1983 ). Monocular and binocular evoked average potential field topography: upper and lower hemiretinal stimuli . Exp. Brain Res. 50 , 341 – 346 . 10.1007/BF00239198 6641866 

  2. Akolkar H. Meyer C. Clady X. Marre O. Bartolozzi C. Panzeri S. . ( 2015 ). What can neuromorphic event-driven precise timing add to spike-based pattern recognition? Neural Comput. 27 , 561 – 593 . 10.1162/NECO_a_00703 25602775 

  3. Andreopoulos A. Kashyap H. J. Nayak T. K. Amir A. Flickner M. D. ( 2018 ). A low power, high throughput, fully event-based stereo system , in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . ( Salt Lake City, UT ), 7532 – 7542 . 

  4. Balasubramanian R. Gan L. ( 2014 ). Development of retinal amacrine cells and their dendritic stratification . Curr. Ophthalmol. Rep. 2 , 100 – 106 . 10.1007/s40135-014-0048-2 25170430 

  5. Barnard S. T. Fischler M. A. ( 1982 ). Computational stereo . ACM Comput. Surv. 14 , 553 – 572 . 10.1145/356893.356896 

  6. Belbachir A. Litzenberger M. Schraml S. Hofstätter M. Bauer D. Schön P. ( 2012 ). Care: A dynamic stereo vision sensor system for fall detection , in IEEE International Symposium on Circuits and Systems ( Seoul ), 731 – 734 . 

  7. Benosman R. Ieng S. Rogister P. Posch C. ( 2011 ). Asynchronous event-based hebbian epipolar geometry . IEEE Trans. Neural Netw. 22 , 1723 – 1734 . 10.1109/TNN.2011.2167239 21954205 

  8. Benosman R. Ieng S. H. Clercq C. Bartolozzi C. Srinivasan M. ( 2012 ). Asynchronous frameless event-based optical flow . Neural Netw. 27 , 32 – 37 . 10.1016/j.neunet.2011.11.001 22154354 

  9. Berner R. Brandli C. Yang M. Liu S.-C. Delbrück T. ( 2013 ). A 240x180 120db 10mw 12us-latency sparse output vision sensor for mobile applications , in Proceedings of the International Image Sensors Workshop ( Kyoto ), 41 – 44 . 

  10. Berner R. Delbrück T. ( 2011 ). Event-based pixel sensitive to changes of color and brightness . IEEE Trans. Circ. Syst. I 58 , 1581 – 1590 . 10.1109/TCSI.2011.2157770 

  11. Bing Z. Meschede C. Rhrbein F. Huang K. Knoll A. C. ( 2018 ). A survey of robotics control based on learning-inspired spiking neural networks . Front. Neurorobot. 12 : 35 . 10.3389/fnbot.2018.00035 30034334 

  12. Boahen K. ( 2005 ). Neuromorpic microchips . Sci. Am. 292 , 56 – 63 . 10.1038/scientificamerican0505-56 15882022 

  13. Boahen K. A. ( 1996 ). A retinomorphic vision system . IEEE Micro 16 , 30 – 39 . 10.1109/40.540078 

  14. Boahen K. A. ( 1998 ). Communicating neuronal ensembles between neuromorphic chips , in Neuromorphic Systems Engineering. The Springer International Series in Engineering and Computer Science (Analog Circuits and Signal Processing), ed Lande T. S. ( Boston, MA : Springer ) 10.1007/978-0-585-28001-1_11 

  15. Boahen K. A. ( 2000 ). Point-to-point connectivity between neuromorphic chips using address events . IEEE Trans. Circ. Syst. II 47 , 416 – 434 . 10.1109/82.842110 

  16. Bogdan P. A. Rowley A. G. D. Rhodes O. Furber S. B. ( 2018 ). Structural plasticity on the spinnaker many-core neuromorphic system . Front. Neurosci. 12 : 434 . 10.3389/fnins.2018.00434 30034320 

  17. Brandli C. Mantel T. Hutter M. Höpflinger M. Berner R. Siegwart R. . ( 2014 ). Adaptive pulsed laser line extraction for terrain reconstruction using a dynamic vision sensor . Front. Neurosci. 7 : 275 . 10.3389/fnins.2013.00275 24478619 

  18. Brandli C. P. ( 2015 ). Event-based machine vision . (Ph.D. thesis). ETH Zurich , Zurich . 

  19. Butime J. Gutierez I. Corzo L. Espronceda C. ( 2006 ). 3D reconstruction methods, a survey , in Proceedings of the First International Conference on Computer Vision Theory and Applications ( Setúbal ), 457 – 463 . 

  20. Camuñas-Mesa L. A. Serrano-Gotarredona T. Ieng S. H. Benosman R. Linares-Barranco B. ( 2014a ). On the use of orientation filters for 3d reconstruction in event-driven stereo vision . Front. Neurosci. 8 : 48 . 10.3389/fnins.2014.00048 24744694 

  21. Camuñas-Mesa L. A. Serrano-Gotarredona T. Linares-Barranco B. Ieng S. Benosman R. ( 2014b ). ‘Event-driven stereo vision with orientation filters , 2014 IEEE International Symposium on Circuits and Systems (ISCAS) ( Melbourne, VIC ), 257 – 260 . 

  22. Carneiro J. Ieng S. Posch C. Benosman R. ( 2013 ). Event-based 3D reconstruction from neuromorphic retinas . Neural Netw. 45 , 27 – 38 . 10.1016/j.neunet.2013.03.006 23545156 

  23. Chen D. G. Matolin D. Bermak A. Posch C. ( 2011 ). Pulse-modulation imaging–review and performance analysis . IEEE Trans. Biomed. Circ. Syst. 5 , 64 – 82 . 10.1109/TBCAS.2010.2075929 23850979 

  24. Cohen G. Afshar S. van Schaik A. Wabnitz A. Bessell T. Rutten M. ( 2017 ). Event-based sensing for space situational awareness , in Proceedings of the Advanced Maui Optical and Space Surveillance (AMOS) Technologies Conference ( Maui ). 

  25. Collins R. T. ( 1996 ). A space-sweep approach to true multi-image matching , in Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition ( San Francisco, CA ), 358 – 363 . 

  26. Culurciello E. Andreou A. G. ( 2005 ). Capacitive coupling of data and power for 3D silicon-on-insulator VLSI , in 2005 IEEE International Symposium on Circuits and Systems ( Kobe ), 4142 – 4145 . 

  27. Cumming B. G. Parker A. J. ( 1997 ). Responses of primary visual cortical neurons to binocular disparity without depth perception . Lett. Nat . 389 , 280 – 283 . 10.1038/38487 9305841 

  28. Cutting J. E. ( 1997 ). High-performance computing and human vision 1 . Behav. Res. Methods Instrum. Comput. 29 , 27 – 36 . 

  29. Davies M. Srinivasa N. Lin T. Chinya G. Cao Y. Choday S. H. ( 2018 ). Loihi: A neuromorphic manycore processor with on-chip learning . IEEE Micro 38 , 82 – 99 . 10.1109/MM.2018.112130359 

  30. Delbrück T. Linares-Barranco B. Culurciello E. Posch C. ( 2010 ). Activity-driven, event-based vision sensors , in Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS) ( Paris ), 2426 – 2429 . 

  31. Dhond U. Aggarwal J. ( 1989 ). Structure from stereo - a review . IEEE Trans. Syst. Man Cybern. 19 , 1489 – 1510 . 10.1109/21.44067 

  32. Dikov G. Firouzi M. Röhrbein F. Conradt J. Richter C. ( 2017 ). Spiking cooperative stereo-matching at 2ms latency with neuromorphic hardware . Front. Neurosci . 10384 , 119 – 137 . 10.1007/978-3-319-63537-8_11 

  33. Dominguez-Morales M. Cerezuela-Escudero E. Jimenez-Fernandez A. Paz-Vicente R. Font-Calvo J. L. Iigo-Blasco P. ( 2011 ). Image matching algorithms in stereo vision using address-event-representation: a theoretical study and evaluation of the different algorithms , in Proceedings of the International Conference on Signal Processing and Multimedia Applications ( Seville ), 1 – 6 . 

  34. Dong-il C. Tae-jae L. ( 2015 ). A review of bioinspired vision sensors and their applications . Sens. Mater. 27 , 447 – 463 . 

  35. Douglas R. Mahowald M. Mead C. ( 1995 ). Neuromorphic analogue VLSI . Annu. Rev. Neurosci. 18 , 255 – 281 . 7605063 

  36. Felzenszwalb P. F. Huttenlocher D. R. ( 2004 ). Efficient belief propagation for early vision , in Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004 , ( Washington, DC ). 

  37. Firouzi M. Conradt J. ( 2016 ). Asynchronous event-based cooperative stereo matching using neuromorphic silicon retinas . Neural Process. Lett. 43 , 311 – 326 . 10.1007/s11063-015-9434-5 

  38. Furber S. Temple S. Brown A. ( 2006 ). High-performance computing for systems of spiking neurons , in Proceedings of AISB'06: Adaptation in Artificial and Biological Systems ( Bristol, UK ), 29 – 36 . 

  39. Furber S. B. Galluppi F. Temple S. Plana L. A. ( 2014 ). The spinnaker project . Proc. IEEE 102 , 652 – 665 . 10.1109/JPROC.2014.2304638 

  40. Furukawa Y. ( 2008 ). High-fidelity image-based modeling . (Ph.D. thesis). Champaign, IL, United States , Graduate College of the University of Illinois at Urbana-Champaign . 

  41. Ganong W. F. ( 1972 ). Medizinische Physiologie . Berlin; Heidelberg : Springer-Verlag . 

  42. Goesele M. Curless B. Seitz S. M. ( 2006 ). Multi-view stereo revisited . IEEE Comput. Vis. Pattern Recogn. 2 , 2402 – 2409 . 10.1109/CVPR.2006.199 

  43. Goldstein E. B. ( 2015 ). Wahrnehmungspsychologie . Berlin; Heidelberg : Springer-Verlag . 

  44. Grüning A. Bohte S. M. ( 2014 ). Spiking neural networks: principles and challenges , in ESANN 2014 Proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning ( Bruges ). 

  45. Haessig G. Berthelon X. Ieng S. Benosman R. ( 2019 ). A spiking neural network model of depth from defocus for event-based neuromorphic vision . Sci. Rep. 9 : 3744 . 10.1038/s41598-019-40064-0 30842458 

  46. Haessig G. Cassidy A. Alvarez-Icaza R. Benosman R. Orchard G. ( 2017 ). Spiking optical flow for event-based sensors using ibm's truenorth neurosynaptic system . CoRR . abs/1710.09820 . 29994132 

  47. Hernández Esteban C. Schmitt F. ( 2004 ). Silhouette and stereo fusion for 3d object modeling . Comput. Vis. Image Understand. 96 , 367 – 392 . 10.1016/j.cviu.2004.03.016 

  48. Huang J. Guo M. Chen S. ( 2017 ). A dynamic vision sensor with direct logarithmic output and full-frame picture-on-demand , in 2017 IEEE International Symposium on Circuits and Systems (ISCAS) ( Baltimore, MD ), 1 – 4 . 10.1109/ISCAS.2017.8050546 

  49. Huang J. Guo M. Wang S. Chen S. ( 2018 ). A motion sensor with on-chip pixel rendering module for optical flow gradient extraction , in 2018 IEEE International Symposium on Circuits and Systems (ISCAS) ( Florence ), 1 – 5 . 

  50. Ieng S. Carneiro J. Osswald M. Benosman R. ( 2018 ). Neuromorphic event-based generalized time-based stereovision . Front. Neurosci. 12 : 442 . 10.3389/fnins.2018.00442 30013461 

  51. Julesz B. ( 1960 ). Binocular depth perception of computer-generated patterns . Bell Syst. Tech. J . 39 , 1125 – 1162 . 10.1002/j.1538-7305.1960.tb03954.x 

  52. Julesz B. ( 1964 ). Binocular depth perception without familiarity cues . Science 145 , 356 – 362 . 14172596 

  53. Julesz B. ( 1971 ). Foundations of Cyclopean Perception . Chicago, IL : University of Chicago Press . 

  54. Kaiser J. Weinland J. Keller P. Steffen L. Vasquez Tieck C. Reichard D. ( 2018 ). Microsaccades for neuromorphic stereo vision , in Artificial Neural Networks and Machine Learning – ICANN 2018 ( Rhodes ), 244 – 252 . 

  55. Khan M. M. Lester D. R. Plana L. A. Rast A. Jin X. Painkras E. ( 2008 ). Spinnaker: Mapping neural networks onto a massively-parallel chip multiprocessor , in 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence) ( Hong Kong ), 2849 – 2856 . 

  56. Kogler J. Eibensteiner F. Humenberger M. Sulzbachner C. Gelautz M. Scharinger J. ( 2014 ). Enhancement of sparse silicon retina-based stereo matching using belief propagation and two-stage post-filtering . J. Electron. Imaging 23 : 43011 10.1117/1.JEI.23.4.043011 

  57. Kogler J. Humenberger M. Sulzbachner C. ( 2011a ). Event-based stereo matching approaches for frameless address event stereo data , in Advances in Visual Computing - 7th International Symposium, ISVC 2011 ( Las Vegas, NV ). 

  58. Kogler J. Sulzbachner C. Humenberger M. Eibensteiner F. ( 2011b ). Advances in Theory andApplications of Stereo Vision , in Address-Event Based Stereo Vision with Bio-inspired Silicon Retina Imagers 165 – 188 . 10.5772/12941 

  59. Kogler J. Sulzbachner C. Kubinger W. ( 2009 ). Bio-inspired stereo vision system with silicon retina imagers , in Proceedings of the 7th International Conference on Computer Vision Systems: Computer Vision Systems ( Liège ), 174 – 183 . 

  60. Kolmogorov V. Zabih R. ( 2002 ). Multi-camera scene reconstruction via graph cuts , in Computer Vision ECCV 2002 ( Copenhagen ), 8 – 40 . 

  61. Kurino H. Nakagawa M. Wook Lee K. Nakamura T. Yamada Y. Tae Park K. ( 2000 ). Smart vision chip fabricated using three dimensional integration technology , in Advances in Neural Information Processing Systems 13, Papers from Neural Information Processing Systems (NIPS) 2000 ( Denver, CO ), 720 – 726 . 

  62. Lazzaro J. Wawrzynek J. ( 1995 ). A multi-sender asynchronous extension to the aer protocol , in 16th Conference on Advanced Research in VLSI ( Chapel Hill, NC ), 158 – 169 . 

  63. Leñero-Bardallo J. A. Bryn D. H. Häfliger P. ( 2014 ). Bio-inspired asynchronous pixel event tricolor vision sensor . IEEE Trans. Biomed. Circ. Syst. 8 , 345 – 357 . 10.1109/TBCAS.2013.2271382 23934671 

  64. Li C. Brandli C. Berner R. Liu H. Yang M. Liu S. ( 2015 ). Design of an RGBW color VGA rolling and global shutter dynamic and active-pixel vision sensor , in 2015 IEEE International Symposium on Circuits and Systems (ISCAS) ( Lisbon ), 718 – 721 . 

  65. Lichtsteiner P. Posch C. T D ( 2008 ). A 128 x 128 120 db 15 us latency asynchronous temporal contrast vision sensor . IEEE J. Solid-State Circ. 43 , 566 – 576 . 10.1109/JSSC.2007.914337 

  66. Liu S. Delbrück T. ( 2010 ). Neuromorphic sensory systems . Curr. Opin. Neurobiol. 20 , 288 – 295 . 10.1016/j.conb.2010.03.007 20493680 

  67. Lucas B. D. Kanade T. ( 1981 ). An iterative image registration technique with an application to stereo vision , in Proceedings of the 7th international joint conference on Artificial intelligence ( Vancouver, BC ), 674 – 679 . 

  68. Maass W. ( 1997 ). Networks of spiking neurons: the third generation of neural network models . Neural Netw . 9 , 1659 – 1671 . 

  69. Mafrica S. ( 2016 ). Bio-inspired visual sensors for robotic and automotive applications . (Ph.D. thesis). Marseille , Aix-Marseille Université . 

  70. Mahowald M. ( 1992 ). VLSI analogs of neuronal visual processing: a synthesis of form and function . (Ph.D. thesis). California Institute of Technology , Pasadena, CA, United States . 

  71. Mahowald M. ( 1994 ). An Analog VLSI System for Stereoscopic Vision . New York, NY : Springer Science+Business Media . 

  72. Mahowald M. Mead C. ( 1991 ). The silicon retina . Sci. Am. 264 , 76 – 82 . 2052936 

  73. Mallik U. Clapp M. Choi E. Cauwenberghs G. Etienne-Cummings R. ( 2005 ). Temporal change threshold detection imager , IEEE ISSCC Digest of Technical Papers ( Baltimore, MD : Johns Hopkins University ), 362 – 603 . 

  74. Mallot H. A. ( 1998 ). Sehen und die Verarbeitung Visueller Information: Eine Einführung . Wiesbaden : Vieweg+Teubner Verlag . 

  75. Maqueda A. I. Loquercio A. Gallego G. García N. Scaramuzza D. ( 2018 ). Event-based vision meets deep learning on steering prediction for self-driving cars . CoRR . arXiv:1804.01310. 10.1109/CVPR.2018.00568 

  76. Marr D. ( 1982 ). Vision: A Computational Investigation into the Human Representation and Processing of Visual Information . New York, NY : Henry Holt and Co., Inc. 

  77. Marr D. Poggio T. ( 1976 ). Cooperative computation of stereo disparity . Science 194 , 283 – 287 . 10.1126/science.968482 968482 

  78. Marr D. Poggio T. ( 1977 ). A Theory of Human Stereo Vision. Technical report, Cambridge, MA : Massachusetts Institute of Technology . 

  79. Marr D. Poggio T. ( 1979 ). A computational theory of human stereo vision . Proc. R. Soc. Lond. Ser. B Biol. Sci. 204 , 301 – 328 . 10.1098/rspb.1979.0029 37518 

  80. Martel J. N. P. Müller J. Conradt J. Sandamirskaya Y. ( 2018 ). An active approach to solving the stereo matching problem using event-based sensors , in 2018 IEEE International Symposium on Circuits and Systems (ISCAS) ( Florence ), 1 – 5 . 

  81. Martin J. G. Davis C. E. Riesenhuber M. Thorpe S. J. ( 2018 ). Zapping 500 faces in less than 100 seconds: evidence for extremely fast and sustained continuous visual search . Sci. Rep. 8 : 12482 . 10.1038/s41598-018-30245-8 30127454 

  82. Matsuda N. Cossairt O. Gupta M. ( 2015 ). Mc3d: Motion contrast 3d scanning , 2015 IEEE International Conference on Computational Photography (ICCP) ( Houston, TX ), 1 – 10 . 

  83. Meister M. Berry M. J. ( 1999 ). The neural code of the retina . Neuron 22 , 435 – 450 . 10.1016/S0896-6273(00)80700-X 10197525 

  84. Merolla P. A. Arthur J. V. Alvarez-Icaza R. Cassidy A. Sawada J. Akopyan F. . ( 2014 ). A million spiking-neuron integrated circuit with a scalable communication network and interface . Science 345 , 668 – 673 . 10.1126/science.1254642 25104385 

  85. Milenkovic A. Milutinovic V. ( 1998 ). A quantitative analysis of wiring lengths in 2D and 3D VLSI . Microelectron. J. 29 , 313 – 321 . 10.1016/S0026-2692(97)00043-8 

  86. Neftci E. Das S. Pedroni B. Kreutz-Delgado K. Cauwenberghs G. ( 2014 ). Event-driven contrastive divergence for spiking neuromorphic systems . Front. Neurosci. 7 : 272 . 10.3389/fnins.2013.00272 24574952 

  87. Orchard G. Benosman R. Etienne-Cummings R. Thakor N. ( 2013 ). A spiking neural network architecture for visual motion estimation , in 2013 IEEE Biomedical Circuits and Systems Conference (BioCAS) ( Rotterdam ), 298 – 301 . 

  88. Orchard G. Meyer C. Etienne-Cummings R. Posch C. Thakor N. Benosman R. ( 2015 ). Hfirst: a temporal approach to object recognition . IEEE Trans. Pattern Anal. Mach. Intell. 37 , 2028 – 2040 . 10.1109/TPAMI.2015.2392947 26353184 

  89. Osswald M. Ieng S. Benosman R. Indiveri G. ( 2017 ). A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems . Sci. Rep. 7 : 40703 10.1038/srep44722 28079187 

  90. Pfeil T. Grübl A. Jeltsch S. Müller E. Müller P. Petrovici M. A. . ( 2013 ). Six networks on a universal neuromorphic computing substrate . Front. Neurosci. 7 : 11 . 10.3389/fnins.2013.00011 23423583 

  91. Piatkowska E. Belbachir A. N. Gelautz M. ( 2013 ). Asynchronous stereo vision for event-driven dynamic stereo sensor using an adaptive cooperative approach , in 2013 IEEE International Conference on Computer Vision Workshops ( Sydney, NSW ), 45 – 50 . 

  92. Piatkowska E. Kogler J. Belbachir N. Gelautz M. ( 2017 ). Improved cooperative stereo matching for dynamic vision sensors with ground truth evaluation , in 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) ( Honolulu, HI ), 370 – 377 . 

  93. Pons J. Keriven R. Faugeras O. ( 2005 ). Modelling dynamic scenes by registering multi-view image sequences , in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) ( San Diego, CA ), 822 – 827 . 10.1109/CVPR.2005.227 

  94. Posch C. Hofstätter M. Matolin D. Vanstraelen G. Schön P. Donath N. ( 2007 ). A dual-line optical transient sensor with on-chip precision time-stamp generation , in 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers ( San Francisco, CA ), 500 – 618 . 

  95. Posch C. Matolin D. Wohlgenannt R. ( 2011 ). A QVGA 143 dB dynamic range frame-free PWM image sensor with loss-less pixel-level video compression and time-domain CDS . IEEE J. Solid-State Circ. 46 , 259 – 275 . 10.1109/JSSC.2010.2085952 

  96. Posch C. Serrano-Gotarredona S. Linares-Barranco B. Delbrück T. ( 2014 ). Retinomorphic event-based vision sensors: bioinspired cameras with spiking output . Proc. IEEE 102 , 1470 – 1484 . 10.1109/JPROC.2014.2346153 

  97. Rebecq H. Gallego G. Mueggler E. Scaramella Perez D. ( 2017 ). EMVS: Event-based multi-view stereo - 3D reconstruction with an event camera in real-time . Int. J. Comput. Vis. 126 , 1394 – 1414 . 10.1007/s11263-017-1050-6 

  98. Reverter Valeiras D. Orchard G. Ieng S. Benosman R. B. ( 2016 ). Neuromorphic event-based 3D pose estimation . Front. Neurosci. 9 : 522 . 10.3389/fnins.2015.00522 26834547 

  99. Rodieck R. ( 1998 ). The First Steps in Seeing . Sunderland, MA : Sinauer Associates . 

  100. Rogister P. Benosman R. Ieng S. Lichtsteiner P. Delbrück T. ( 2012 ). Asynchronous event-based binocular stereo matching . IEEE Trans. Neural Netw. Learn. Syst. 23 , 347 – 353 . 10.1109/TNNLS.2011.2180025 24808513 

  101. Rose D. ( 1980 ). The binocular: monocular sensitivity ratio for movement detection varies with temporal frequency . Perception 9 , 577 – 580 . 10.1068/p090577 7443397 

  102. Ruedi P. Heim P. Kaess F. Grenet E. Heitger F. Burgi P. ( 2003 ). A 128 /spl times/ 128 pixel 120-db dynamic-range vision-sensor chip for image contrast and orientation extraction . IEEE J. Solid-State Circ. 38 , 2325 – 2333 . 10.1109/JSSC.2003.819169 

  103. Scharstein D. Szeliski R. Zabih R. ( 2002 ). A taxonomy and evaluation of dense two-frame stereo correspondence algorithms , in Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision . ( Kauai, HI ). 

  104. Schraml S. Schön P. Milosevic N. ( 2007 ). Smartcam for real-time stereo vision - address-event based embedded system , in Proceedings of the Second International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP ( Barcelona ), 466 – 471 . 

  105. Seitz S. Curless B. Diebel J. Scharstein D. Szeliski R. ( 2006 ). A comparison and evaluation of multi-view stereo reconstruction algorithms , in Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition ( New York, NY ), 519 – 528 . 

  106. Sivilotti M. A. ( 1990 ). Wiring considerations in analog VLSI systems, with application to field-programmable networks . (Ph.D. thesis). California Institute of Technology , Pasadena, CA, United States . 

  107. Son B. Suh Y. Kim S. Jung H. Kim J. Shin C. ( 2017 ). A 640 × 480 dynamic vision sensor with a 9 μ pixel and 300meps address-event representation , in 2017 IEEE International Solid-State Circuits Conference (ISSCC) ( San Francisco, CA ), 66 – 67 . 

  108. Szeliski R. ( 2010 ). Computer Vision: Algorithms and Applications . London : Springer Verlag . 

  109. Vogiatzis G. Hernández Esteban C. Torr P. Cipolla R. ( 2007 ). Multiview stereo via volumetric graph-cuts and occlusion robust photo-consistency . IEEE Trans. Pattern Anal. Mach. Intell. 29 , 2241 – 2246 . 10.1109/TPAMI.2007.70712 17934232 

  110. Vreeken J. ( 2003 ). Spiking Neural Networks, an Introduction . Utrecht University: Information and Computing Sciences . 

  111. Xie Z. Chen S. Orchard G. ( 2017 ). Event-based stereo depth estimation using belief propagation . Front. Neurosci. 11 : 535 . 10.3389/fnins.2017.00535 29051722 

  112. Yaffe Y. Levy N. Soloveichik E. Derhy S. Keisar A. Rozin E. ( 2017 ). Dynamic vision sensor - the road to market , in ICRA'17 . Singapore . 

  113. Zaghloul K. A. Boahen K. ( 2006 ). A silicon retina that reproduces signals in the optic nerve . J. Neural Eng. 3 : 257 . 10.1088/1741-2560/3/4/002 17124329 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로