$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Effect of Zr doping and Al-Zr co-doping on LiNi0.5Co0.25Mn0.25O2 for lithium-ion batteries

Solid state ionics, v.346, 2020년, pp.115220 -   

Li, Lina (Corresponding author.) ,  Han, Enshan ,  Zhu, Lingzhi ,  Qiao, Shunpan ,  Du, Chenyu ,  Liu, Hui

Abstract AI-Helper 아이콘AI-Helper

Abstract Cathode material Li(Ni0.5Co0.25Mn0.25)1-xZrxO2 (x = 0, 0.005, 0.01, 0.02, 0.03) and Li(Ni0.5Co0.25-yMn0.25Aly)0.99Zr0.01O2 (y = 0, 0.01, 0.02, 0.03) were synthesized by coprecipitation method. The structure and electrochemical properties of cathode materials were mainly studied by X-ray di...

주제어

참고문헌 (44)

  1. Solid State Ionics Yamakawa 2018 10.1016/j.ssi.2018.02.013 Phase-field modeling of stress generation in polycrystalline LiCoO2 

  2. Solid State Ionics Li 325 30 2018 10.1016/j.ssi.2018.07.021 Niu, Enhanced electrochemical performance of Li2FeSiO4/C as cathode for lithium-ion batteries via metal doping at Fe-site 

  3. Electrochim. Acta Jeong 300 156 2019 10.1016/j.electacta.2019.01.051 Cathode electrolyte interface of lithium difluorobis(oxalato) phosphate at 4.4 V operation of LiCoO2 for high-energy lithium-ion batteries 

  4. J. Phys. Chem. C Liang 120 6383 2016 10.1021/acs.jpcc.6b00369 Unraveling the origin of instability in Ni-rich LiNi1-2xCoxMnxO2 (NCM) cathode materials 

  5. J. Power Sources Noh 233 121 2013 10.1016/j.jpowsour.2013.01.063 Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries 

  6. Electrochim. Acta Tsai 273 200 2018 10.1016/j.electacta.2018.03.154 Enabling high rate charge and discharge capability, low internal resistance, and excellent cycle ability for Li-ion batteries utilizing graphene additives 

  7. Mater. Res. Bull. Huang 95 477 2017 10.1016/j.materresbull.2017.08.005 Facile synthesis of fusiform layered oxides assisted by microwave as cathode material for lithium-ion batteries 

  8. J. Electroanal. Chem. Zhao 810 1 2018 10.1016/j.jelechem.2018.01.006 LiNi0.5Co0.2Mn0.3O2 hollow microspheres-synthesis, characterization and application as cathode materials for power lithium ion batteries 

  9. Mater. Lett. Zhang 336 87 2017 Facile synthesis silkworm-like Ni-rich layered LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries 

  10. Solid State Ionics Jin 336 87 2019 10.1016/j.ssi.2019.03.020 Mg-doped Li1.133Ni0.2Co0.2Mn0.467O2 in Li site as high-performance cathode material for Li-ion batteries 

  11. J. Power Sources Liu 267 874 2014 10.1016/j.jpowsour.2014.05.047 Excellent high rate capability and high voltage cycling stability of Y2O3-coated LiNi0.5Co0.2Mn0.3O2 

  12. Ionics (Kiel) Han 24 2 393 2018 10.1007/s11581-017-2226-3 The effects of copper and titanium co-substitution on LiNi0.6Co0.15Mn0.25O2 for lithium ion batteries 

  13. Electrochim. Acta Zhou 261 565 2018 10.1016/j.electacta.2017.12.159 Enhanced rate performance and high potential as well as decreased strain of LiNi0.6Co0.2Mn0.2O2 by facile fluorine modification 

  14. Electrochim. Acta Lini 190 264 2016 10.1016/j.electacta.2016.01.039 Mg-Al-B co-substitution LiNi0.5Co0.2Mn0.3O2 cathode materials with improved cycling performance for lithium-ion battery under high cutoff voltage 

  15. Solid State Ionics Lu 298 9 2016 10.1016/j.ssi.2016.10.014 The effects of Ti4+-Fe3+ co-doping on Li[Ni1/3Co1/3Mn1/3]O2 

  16. Chen 281 48 2018 High-voltage Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Material via the Synergetic Modification of the Zr/Ti Elements 

  17. Electrochim. Acta Wang 196 101 2016 10.1016/j.electacta.2016.02.156 Co-modification of LiNi0.5Co0.2Mn0.3O2 cathode materials with zirconium substitution and surface polypyrrole coating: towards superior high voltage electrochemical performances for lithium ion batteries 

  18. Sustain. Energy Fuels Li 2 413 2017 10.1039/C7SE00513J Dual functions of zirconium modification on improving the electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2 

  19. J. Electroceram. Kim 23 254 2009 10.1007/s10832-008-9414-5 Improving the rate performance of LiCoO2 by Zr doping 

  20. J. Mater. Chem. A Dianat 1 9273 2013 10.1039/c3ta11598d Effects of Al-doping on the properties of Li-Mn-Ni-O cathode materials for Li-ion batteries: an ab initio study 

  21. J. Alloys Compd. Li 768 582 2018 10.1016/j.jallcom.2018.07.223 Co-modification by LiAlO2-coating and Al-doping for LiNi0.5Co0.2Mn0.3O2 as a high-performance cathode material for lithium-ion batteries with a high cutoff voltage 

  22. J. Power Sources Zhong 216 368 2012 10.1016/j.jpowsour.2012.05.108 Structural, electrochemical and thermal stability investigations on LiNi0.5?xAl2xMn1.5?xO4 (0 ≤ 2x ≤ 1.0) as 5 V cathode materials 

  23. J. Electrochem. Soc. Dixit 164 A6359 2017 10.1149/2.0561701jes Unraveling the effects of Al doping on the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 using first principles 

  24. J. Mater. Chem. A Liang 5 48 2017 10.1039/C7TA08618K Site dependent multicomponent doping strategy for Ni-rich LiNi1-2yCoyMnyO2 (y =1/12) cathode materials for Li-Ion batteries 

  25. Solid State Ionics Kou 296 154 2016 10.1016/j.ssi.2016.09.020 The effect of Ti doping on electrochemical properties of 

  26. J. Phys. Chem. C Xie 120 3235 2016 10.1021/acs.jpcc.5b12407 The role of sodium in LiNi0.8Co0.15Al0.05O2 cathode material and its electrochemical behaviors 

  27. Ceram. Int. Lai 45 14270 2019 10.1016/j.ceramint.2019.04.136 Alleviating the air sensitivity of nickel-rich LiNi0.815Co0.15Al0.035O2 cathode by Zr4+-modification for Li-ion batteries 

  28. Electrochim. Acta Li 291 84 2018 10.1016/j.electacta.2018.08.124 Construction of homogeneously Al3+ doped Ni rich Ni-Co-Mn cathode with high stable cycling performance and storage stability via scalable continuous precipitation 

  29. New J. Chem. Ren 41 10959 2017 10.1039/C7NJ01206C The impact of aluminum impurity on the regenerated lithium nickel cobalt manganese oxide cathode materials from spent LIBs 

  30. Solid State Ionics Liu 337 107 2019 10.1016/j.ssi.2019.04.020 The effects of molybdenum doping on LiNi0.6Co0.2Mn0.2O2 cathode material 

  31. J. Alloys Compd. Zhao 724 1109 2017 10.1016/j.jallcom.2017.05.331 Improving the Ni-rich LiNi0.5Co0.2Mn0.3O2 cathode properties at high operating voltage by double coating layer of Al2O3 and AlPO4 

  32. Solid State Ionics Mi 325 24 2018 10.1016/j.ssi.2018.07.022 Effect of iron doping on LiNi0.35Co0.30Mn0.35O2 

  33. Electrochim. Acta Wang 188 48 2015 10.1016/j.electacta.2015.11.093 Role of zirconium dopant on the structure and high voltage 

  34. J. Power Sources Eilers-rethwisch 387 101 2018 10.1016/j.jpowsour.2018.02.080 Synthesis, electrochemical investigation and structural analysis of doped Li[Ni0.6Mn0.2Co0.2-M]O2 (x = 0, 0.05; M = Al, Fe, Sn) cathode materials 

  35. Electrochim. Acta Li 212 399 2016 10.1016/j.electacta.2016.07.033 Effect of trace Al surface doping on the structure, surface chemistry and low temperature performance of LiNi0.5Co0.2Mn0.3O2 cathode 

  36. ACS Energy Lett. Yoon 3 1634 2018 10.1021/acsenergylett.8b00805 Self-passivation of a LiNiO2 cathode for a lithium-ion battery through Zr doping 

  37. ACS Energy Lett. Weigel 18 508 2019 10.1021/acsenergylett.8b02302 Structural and electrochemical aspects of LiNi0.8Co0.1Mn0.1O2 cathode materials doped by various cations 

  38. J. Mater. Chem. A Schipper 4 16073 2016 10.1039/C6TA06740A Stabilizing nickel-rich layered cathode materials by a high-charge cation doping strategy: zirconium-doped LiNi0.6Co0.2Mn0.2O2 

  39. Solid State Ionics Xi 327 27 2018 10.1016/j.ssi.2018.10.020 Comparative study of the electrochemical performance of LiNi0.5Co0.2Mn0.3O2 and LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion batteries 

  40. Solid State Ionics Gu 336 129 2019 10.1016/j.ssi.2019.03.018 Improving the electrochemical properties of Mn-rich Li1.20[Mn0.54Ni0.13Co0.13]O2 by Nb and F co-doping 

  41. J. Electrochem. Soc. Zhao 162 1352 2015 10.1149/2.1031507jes Modeling internal shorting process in large-format Li-ion cells 

  42. Int. J. Heat Mass Transf. Dong 117 261 2018 10.1016/j.ijheatmasstransfer.2017.10.024 Numerical modeling and analysis of the thermal behavior of NCM lithium-ion batteries subjected to very high C-rate discharge/charge operations 

  43. Ionics Zhang 21 319 2015 10.1007/s11581-014-1308-8 Preparation of LiFe0.98M0.02PO4/C cathode material for lithium-ion battery 

  44. J. Power Sources Sun 410-411 115 2019 10.1016/j.jpowsour.2018.11.015 In-situ surface modification to stabilize Ni-rich layered oxide cathode with functional electrolyte 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로