$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Inhibitory Effects of Raw-Extract Centella asiatica (RECA) on Acetylcholinesterase, Inflammations, and Oxidative Stress Activities via In Vitro and In Vivo 원문보기

Molecules a journal of synthetic chemistry and natural product chemistry, v.25 no.4, 2020년, pp.892 -   

Hafiz, Zetty Zulikha (Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia) ,  Amin, Muhammad ‘Afif Mohd (zulikha87@gmail.com) ,  Johari James, Richard Muhammad (Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA Selangor Branch, Puncak Alam Campus, 42300 Puncak Alam, Selangor Darul Ehsan, Malaysia richard@puncakalam.uitm.edu.my (R.M.J.J.)) ,  Teh, Lay Kek (tehlaykek@puncakalam.uitm.edu.my (L.K.T.)) ,  Salleh, Mohd Zaki (zakisalleh@puncakalam.uitm.edu.my (M.Z.S.)) ,  Adenan, Mohd Ilham (Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA Selangor Branch, Puncak Alam Campus, 42300 Puncak Alam, Selangor Darul Ehsan, Malaysia richard@puncakalam.uitm.edu.my (R.M.J.J.))

Abstract AI-Helper 아이콘AI-Helper

Centella asiatica (C. asiatica) is one of the medicinal plants that has been reported to exert comprehensive neuroprotection in vitro and in vivo. In view of this, the present study was performed to investigate the effect of ethanolic extract of C. asiatica, designated as raw-extract of C. asiatica ...

주제어

참고문헌 (75)

  1. 1. Helzner E.P. Scarmeas N. Cosentino S. Tang M.X. Schupf N. Stern Y. Survival in Alzheimer disease: A multiethnic, population-based study of incident cases Neurology 2008 71 1489 1495 10.1212/01.wnl.0000334278.11022.42 18981370 

  2. 2. Luca M. Luca A. Calandra C. The Role of Oxidative Damage in the Pathogenesis and Progression of Alzheimer’s Disease and Vascular Dementia Oxid. Med. Cell. Longev. 2015 2015 1 8 10.1155/2015/504678 26301043 

  3. 3. Sanabria-Castro A. Alvarado-Echeverria I. Monge-Bonilla C. Molecular pathogenesis of alzheimer’s disease: An update Ann. Neurosci. 2017 24 46 54 10.1159/000464422 28588356 

  4. 4. Barone E. Editorial (Thematic Issue: Oxidative Stress and Alzheimer Disease: Where Do We Stand?) Curr. Alzheimer Res. 2016 13 108 111 10.2174/156720501302160101123849 26750609 

  5. 5. Overk C.R. Felder C.C. Tu Y. Schober D.A. Bales K.R. Wuu J. Mufson E.J. Cortical M1 receptor concentration increases without a concomitant change in function in Alzheimer’s disease J. Chem. Neuroanat. 2010 40 63 70 10.1016/j.jchemneu.2010.03.005 20347961 

  6. 6. Pepeu G. Giovannini M.G. Cholinesterase inhibitors and memory Chem. Biol. Interact. 2010 187 403 408 10.1016/j.cbi.2009.11.018 19941841 

  7. 7. Hung S.Y. Fu W.M. Drug candidates in clinical trials for Alzheimer’s disease J. Biomed. Sci. 2017 47 10.1186/s12929-017-0355-7 28720101 

  8. 8. Rosales-Corral S. Tan D.-X. Manchester L. Reiter R.J. Diabetes and Alzheimer Disease, Two Overlapping Pathologies with the Same Background: Oxidative Stress Oxid. Med. Cell. Longev. 2015 2015 1 18 10.1155/2015/985845 

  9. 9. Huang G.J. Huang S.S. Chiu C.S. Chen H.J. Hou W.C. Sheu M.J. Lin Y.C. Shie P.H. Antinociceptive activities and the mechanisms of anti-inflammation of asiatic acid in mice Evid. Based Complement. Altern. Med. 2011 2011 1 10.1155/2011/895857 

  10. 10. Osborn G.G. Saunders A.V. Current treatments for patients with Alzheimer disease J. Am. Osteopath. Assoc. 2010 110 S16 S26 20926739 

  11. 11. Cooper E.L. Ma M.J. Alzheimer Disease: Clues from traditional and complementary medicine J. Tradit. Complement. Med. 2017 7 380 385 10.1016/j.jtcme.2016.12.003 29034183 

  12. 12. Li J.W. Vederas J.C. Drug discovery and natural products: End of era or an endless frontier? Biomeditsinskaya Khimiya 2011 57 148 10.18097/pbmc20115702148 21870600 

  13. 13. Heo S.K. Yun H.J. Yi H.S. Noh E.K. Park S.D. Evodiamine and rutaecarpine inhibit migration by LIGHT via suppression of NADPH oxidase activation J. Cell. Biochem. 2009 107 123 133 10.1002/jcb.22109 19241441 

  14. 14. Tsai T.H. Lee T.F. Chen C.F. Wang L.C.H. Thermoregulatory effects of alkaloids isolated from Wu-chu-yu in afebrile and febrile rats Pharmacol. Biochem. Behav. 1995 50 293 298 10.1016/0091-3057(94)00317-C 7740070 

  15. 15. Liu A.-J. Wang S.-H. Hou S.-Y. Lin C.-J. Chiu W.-T. Hsiao S.-H. Chen T.-H. Shih C.-M. Evodiamine Induces Transient Receptor Potential Vanilloid-1-Mediated Protective Autophagy in U87-MG Astrocytes Evid. Based Complement. Altern. Med. 2013 2013 1 9 10.1155/2013/354840 

  16. 16. Kudoh C. Arita R. Honda M. Kishi T. Komatsu Y. Asou H. Mimura M. Effect of ninjin’yoeito, a Kampo (traditional Japanese) medicine, on cognitive impairment and depression in patients with Alzheimer’s disease: 2 years of observation Psychogeriatrics 2016 16 85 92 10.1111/psyg.12125 25918972 

  17. 17. Chanana P. Kumar A. Possible Involvement of Nitric Oxide Modulatory Mechanisms in the Neuroprotective Effect of Centella asiatica Against Sleep Deprivation Induced Anxiety Like Behaviour, Oxidative Damage and Neuroinflammation Phyther. Res. 2016 30 671 680 10.1002/ptr.5582 

  18. 18. Hashim P. Centella asiatica in food and beverage applications and its potential antioxidant and neuroprotective effect Int. Food Res. J. 2011 18 1215 

  19. 19. Shinomol G.K. Muralidhara M.S. Bharath M. Exploring the Role of “Brahmi” ( Bacopa monnieri and Centella asiatica ) in Brain Function and Therapy Recent Pat. Endocr. Metab. Immune Drug Discov. 2011 5 33 49 22074576 

  20. 20. Orhan I.E. Centella asiatica (L.) Urban: From traditional medicine to modern medicine with neuroprotective potential Evid. Based Complement. Altern. Med. 2012 2012 1 8 10.1155/2012/946259 

  21. 21. Singhal A. Bangar O. Naithani V. Medicinal plants with a potential to treat Alzheimer and associated symptoms Int. J. Nutr. Pharmacol. Neurol. Dis. 2012 2 84 10.4103/2231-0738.95927 

  22. 22. Gohil K. Patel J. Gajjar A. Pharmacological review on Centella asiatica: A potential herbal cure-all Indian J. Pharm. Sci. 2010 72 546 10.4103/0250-474X.78519 21694984 

  23. 23. James J. Dubery I. Identification and quantification of triterpenoid centelloids in Centella asiatica (L.) Urban by densitometric TLC JPC. Planar Chromatogr. Mod. TLC 2011 24 82 87 10.1556/JPC.24.2011.1.16 

  24. 24. Won J.H. Shin J.S. Park H.J. Jung H.J. Koh D.J. Jo B.G. Lee J.Y. Yun K. Lee K.T. Anti-inflammatory effects of madecassic acid via the suppression of NF-κB pathway in LPS-induced RAW 264.7 macrophage cells Planta Med. 2010 76 251 257 10.1055/s-0029-1186142 19774506 

  25. 25. Park J.H. Choi J.Y. Son D.J. Park E.K. Song M.J. Hellstrom M. Hong J.T. Anti-inflammatory effect of titrated extract of Centella asiatica in phthalic anhydride-induced allergic dermatitis animal model Int. J. Mol. Sci. 2017 18 738 10.3390/ijms18040738 

  26. 26. Gray N.E. Alcazar Magana A. Lak P. Wright K.M. Quinn J. Stevens J.F. Maier C.S. Soumyanath A. Centella asiatica: Phytochemistry and mechanisms of neuroprotection and cognitive enhancement Phytochem. Rev. 2018 17 161 194 10.1007/s11101-017-9528-y 31736679 

  27. 27. Edward M.J. American Herbal Products Association’s Botanical Safety Handbook edited by M. McGuffin, C.; Hobbs, R. Upton, and A. Goldberg, CRC Press, Boca Raton, FL, 231 pages, 1997. $$39.95 J. Toxicol. Cutan. Ocul. Toxicol. 2008 19 167 168 10.3109/15569520009051512 

  28. 28. Randriamampionona D. Diallo B. Rakotoniriana F. Rabemanantsoa C. Cheuk K. Corbisier A.M. Mahillon J. Ratsimamanga S. El Jaziri M. Comparative analysis of active constituents in Centella asiatica samples from Madagascar: Application for ex situ conservation and clonal propagation Fitoterapia 2007 78 481 489 10.1016/j.fitote.2007.03.016 

  29. 29. Alqahtani A. Tongkao-On W. Li K.M. Razmovski-Naumovski V. Chan K. Li G.Q. Seasonal Variation of Triterpenes and Phenolic Compounds in Australian Centella asiatica (L.) Urb Phytochem. Anal. 2015 26 436 443 10.1002/pca.2578 26219274 

  30. 30. Rafi M. Handayani F. Darusman L.K. Rohaeti E. Wahyu Y. Sulistiyani Honda K. Putri S.P. A combination of simultaneous quantification of four triterpenes and fingerprint analysis using HPLC for rapid identification of Centella asiatica from its related plants and classification based on cultivation ages Ind. Crops Prod. 2018 122 93 97 10.1016/j.indcrop.2018.05.062 

  31. 31. Geran R.I. Protocols for screening chemical agents and natural products against animal tumors and other biological systems Cancer Chemother. Rept. 1972 3 17 27 

  32. 32. Micheau J. Marighetto A. Acetylcholine and memory: A long, complex and chaotic but still living relationship Behav. Brain Res. 2011 221 424 429 10.1016/j.bbr.2010.11.052 21130809 

  33. 33. Li S.-M. Mo M.-S. Xu P.-Y. Progress in mechanisms of acetylcholinesterase inhibitors and memantine for the treatment of Alzheimer’s disease Neuroimmunol Neuroinflammation 2015 2 274 

  34. 34. Waldemar G. Dubois B. Emre M. Georges J. McKeith I.G. Rossor M. Scheltens P. Tariska P. Winblad B. Recommendations for the diagnosis and management of Alzheimer’s disease and other disorders associated with dementia: EFNS guideline Eur. J. Neurol. 2007 14 e1 e26 10.1111/j.1468-1331.2006.01605.x 17222085 

  35. 35. Barragan Martinez D. Garcia Soldevilla M.A. Parra Santiago A. Tejeiro Martinez J. Alzheimer’s disease Medicine 2019 12 4338 4341 

  36. 36. Agholme L. Lindstrom T. Kgedal K. Marcusson J. Hallbeck M. An in vitro model for neuroscience: Differentiation of SH-SY5Y cells into cells with morphological and biochemical characteristics of mature neurons J. Alzheimer’s Dis. 2010 20 1069 1082 10.3233/JAD-2010-091363 20413890 

  37. 37. Jamsa A. Hasslund K. Cowburn R.F. Backstrom A. Vasange M. The retinoic acid and brain-derived neurotrophic factor differentiated SH-SY5Y cell line as a model for Alzheimer’s disease-like tau phosphorylation Biochem. Biophys. Res. Commun. 2004 319 993 1000 10.1016/j.bbrc.2004.05.075 15184080 

  38. 38. Pahlman S. Ruusala A.I. Abrahamsson L.M. Mattsson M.E. Esscher T. Retinoic acid-induced differentiation of cultured human neuroblastoma cells: A comparison with phorbolester-induced differentiation Cell. Differ. 1984 14 135 144 10.1016/0045-6039(84)90038-1 6467378 

  39. 39. Presgraves S.P. Ahmed T. Borwege S. Joyce J.N. Terminally differentiated SH-SY5Y cells provide a model system for studying neuroprotective effects of dopamine agonists Neurotox. Res. 2003 5 579 598 10.1007/BF03033178 

  40. 40. Korecka J.A. van Kesteren R.E. Blaas E. Spitzer S.O. Kamstra J.H. Smit A.B. Swaab D.F. Verhaagen J. Bossers K. Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling PLoS ONE 2013 8 e63862 10.1371/journal.pone.0063862 23724009 

  41. 41. Qiao J. Paul P. Lee S. Qiao L. Josifi E. Tiao J.R. Chung D.H. PI3K/AKT and ERK regulate retinoic acid-induced neuroblastoma cellular differentiation Biochem. Biophys. Res. Commun. 2012 424 421 426 10.1016/j.bbrc.2012.06.125 22766505 

  42. 42. Shipley M.M. Mangold C.A. Szpara M.L. Differentiation of the SH-SY5Y Human Neuroblastoma Cell Line J. Vis. Exp. 2016 53193 10.3791/53193 26967710 

  43. 43. Saleem H. Ahmad I. Shahid M.N. Gill M.S.A. Nadeem M.F. Mahmood W. Rashid I. In vitro acetylcholinesterase and butyrylcholinesterase inhibitory potentials of Jatropha gossypifolia plant extracts Acta Pol. Pharm. Drug Res. 2016 73 419 423 

  44. 44. Orhan I.E. Atasu E. Senol F.S. Ozturk N. Demirci B. Das K. Sekeroglu N. Comparative studies on Turkish and Indian Centella asiatica (L.) Urban (gotu kola) samples for their enzyme inhibitory and antioxidant effects and phytochemical characterization Ind. Crops Prod. 2013 47 316 322 10.1016/j.indcrop.2013.03.022 

  45. 45. Niamnuy C. Charoenchaitrakool M. Mayachiew P. Devahastin S. Bioactive Compounds and Bioactivities of Centella asiatica (L.) Urban Prepared by Different Drying Methods and Conditions Dry. Technol. 2013 31 2007 2015 10.1080/07373937.2013.839563 

  46. 46. Cuello A.C. Early and Late CNS Inflammation in Alzheimer’s Disease: Two Extremes of a Continuum? Trends Pharmacol. Sci. 2017 38 956 966 10.1016/j.tips.2017.07.005 28867259 

  47. 47. Calsolaro V. Edison P. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions Alzheimer’s Dement. 2016 12 719 732 10.1016/j.jalz.2016.02.010 27179961 

  48. 48. Kettenmann H. Kirchhoff F. Verkhratsky A. Microglia: New Roles for the Synaptic Stripper Neuron 2013 77 10 18 10.1016/j.neuron.2012.12.023 23312512 

  49. 49. Lyman M. Lloyd D.G. Ji X. Vizcaychipi M.P. Ma D. Neuroinflammation: The role and consequences Neurosci. Res. 2014 79 1 12 10.1016/j.neures.2013.10.004 24144733 

  50. 50. Dheen S.T. Kaur C. Ling E.-A. Microglial Activation and its Implications in the Brain Diseases Curr. Med. Chem. 2007 14 1189 1197 10.2174/092986707780597961 17504139 

  51. 51. Park J. Min J.S. Kim B. Chae U.B. Yun J.W. Choi M.S. Kong I.K. Chang K.T. Lee D.S. Mitochondrial ROS govern the LPS-induced pro-inflammatory response in microglia cells by regulating MAPK and NF-κB pathways Neurosci. Lett. 2015 584 191 196 10.1016/j.neulet.2014.10.016 25459294 

  52. 52. He L. He T. Farrar S. Ji L. Liu T. Ma X. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species Cell. Physiol. Biochem. 2017 44 532 553 10.1159/000485089 29145191 

  53. 53. Dilshara M.G. Lee K.T. Lee C.M. Choi Y.H. Lee H.J. Choi I.W. Kim G.Y. New compound, 5-O-isoferuloyl-2-deoxy-D-ribono-γ-lacton from Clematis mandshurica: Anti-inflammatory effects in lipopolysaccharide-stimulated BV2 microglial cells Int. Immunopharmacol. 2015 24 14 23 10.1016/j.intimp.2014.10.030 25445966 

  54. 54. Li J. Xu X. Cai X. Weng Y. Wang Y. Shen Q. Shi X. Milk Fat Globule-Epidermal Growth Factor-Factor 8 Reverses Lipopolysaccharide-Induced Microglial Oxidative Stress Oxid. Med. Cell. Longev. 2019 2019 1 8 10.1155/2019/2601394 31001372 

  55. 55. Park E. Chun H.S. Melatonin Attenuates Manganese and Lipopolysaccharide-Induced Inflammatory Activation of BV2 Microglia Neurochem. Res. 2017 42 656 666 10.1007/s11064-016-2122-7 27900599 

  56. 56. Sasmita A.O. Ling A.P.K. Voon K.G.L. Koh R.Y. Wong Y.P. Madecassoside activates anti-neuroinflammatory mechanisms by inhibiting lipopolysaccharide-induced microglial inflammation Int. J. Mol. Med. 2018 41 3033 3040 10.3892/ijmm.2018.3479 29436598 

  57. 57. Naidoo D.B. Chuturgoon A.A. Phulukdaree A. Guruprasad K.P. Satyamoorthy K. Sewram V. Withania somnifera modulates cancer cachexia associated inflammatory cytokines and cell death in leukaemic THP-1 cells and peripheral blood mononuclear cells (PBMC’s) BMC Complement. Altern. Med. 2018 18 126 10.1186/s12906-018-2192-y 29631586 

  58. 58. Yin N. Peng Z. Li B. Xia J. Wang Z. Yuan J. Fang L. Lu X. Isoflurane attenuates lipopolysaccharide-induced acute lung injury by inhibiting ROS-mediated NLRP3 inflammasome activation Am. J. Transl. Res. 2016 8 2033 27347312 

  59. 59. Batista C.R.A. Gomes G.F. Candelario-Jalil E. Fiebich B.L. de Oliveira A.C.P. Lipopolysaccharide-Induced Neuroinflammation as a Bridge to Understand Neurodegeneration Int. J. Mol. Sci. 2019 20 2293 10.3390/ijms20092293 

  60. 60. Zakaria R. Wan Yaacob W.M.H. Othman Z. Long I. Ahmad A.H. Al-Rahbi B. Lipopolysaccharide-Induced Memory Impairment in Rats: A Model of Alzheimer’s Disease Physiol. Res 2017 66 553 565 10.33549/physiolres.933480 28406691 

  61. 61. Zhao J. Bi W. Xiao S. Lan X. Cheng X. Zhang J. Lu D. Wei W. Wang Y. Li H. Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice Sci. Rep. 2019 9 5790 10.1038/s41598-019-42286-8 30962497 

  62. 62. Nurul Huda M. Vasudevan M. Lim S. Sharmili V. Abu Bakar A.M. Kalavathy R. Lactobacilli-fermented cow’s milk attenuated lipopolysaccharide-induced neuroinflammation and memory impairment in vitro and in vivo J. Dairy Res. 2017 84 488 495 29154736 

  63. 63. Lykhmus O. Mishra N. Koval L. Kalashnyk O. Gergalova G. Uspenska K. Komisarenko S. Soreq H. Skok M. Molecular Mechanisms Regulating LPS-Induced Inflammation in the Brain Front. Mol. Neurosci. 2016 9 19 10.3389/fnmol.2016.00019 27013966 

  64. 64. Lykhmus O. Voytenko L. Koval L. Mykhalskiy S. Kholin V. Peschana K. Zouridakis M. Tzartos S. Komisarenko S. Skok M. α7 nicotinic acetylcholine receptor-specific antibody induces inflammation and amyloid β 42 accumulation in the mouse brain to impair memory PLoS ONE 2015 10 e0122706 10.1371/journal.pone.0122706 25816313 

  65. 65. Reale M. Iarlori C. Gambi F. Feliciani C. Salone A. Toma L. DeLuca G. Salvatore M. Conti P. Gambi D. Treatment with an acetylcholinesterase inhibitor in Alzheimer patients modulates the expression and production of the pro-inflammatory and anti-inflammatory cytokines J. Neuroimmunol. 2004 148 162 171 10.1016/j.jneuroim.2003.11.003 14975597 

  66. 66. Hafiz Z.Z. Shamsuddin N. Mukhtar S.M. James R.J. Adenan M.I. Anti-Oxidant Activities of Raw-Extract Centella Asiatica (RECA) on Lipopolysaccharide (LPS)-Induced Neuroinflammation Sprague Dawley Rats Int. J. Eng. Technol. 2018 7 96 101 

  67. 67. Cacciatore I. Baldassarre L. Fornasari E. Mollica A. Pinnen F. Recent advances in the treatment of neurodegenerative diseases based on GSH delivery systems Oxid. Med. Cell. Longev. 2012 2012 1 12 10.1155/2012/240146 

  68. 68. Ansari M.A. Scheff S.W. Oxidative stress in the progression of alzheimer disease in the frontal cortex J. Neuropathol. Exp. Neurol. 2010 69 155 167 10.1097/NEN.0b013e3181cb5af4 20084018 

  69. 69. Mischley L.K. Lau R.C. Shankland E.G. Wilbur T.K. Padowski J.M. Phase IIb study of intranasal glutathione in Parkinson’s disease J. Parkinson’s Dis. 2017 7 289 299 10.3233/JPD-161040 28436395 

  70. 70. Richie J.P. Nichenametla S. Neidig W. Calcagnotto A. Haley J.S. Schell T.D. Muscat J.E. Randomized controlled trial of oral glutathione supplementation on body stores of glutathione Eur. J. Nutr. 2015 54 251 263 10.1007/s00394-014-0706-z 24791752 

  71. 71. Kovacs-Nolan J. Rupa P. Matsui T. Tanaka M. Konishi T. Sauchi Y. Sato K. Ono S. Mine Y. In vitro and ex vivo uptake of glutathione (GSH) across the intestinal epithelium and fate of oral GSH after in vivo supplementation J. Agric. Food Chem. 2014 62 9499 9506 10.1021/jf503257w 25198144 

  72. 72. Allen J. Bradley R.D. Effects of oral glutathione supplementation on systemic oxidative stress biomarkers in human volunteers J. Altern. Complement. Med. 2011 17 827 833 10.1089/acm.2010.0716 21875351 

  73. 73. Duffy S.L. Lagopoulos J. Hickie I.B. Diamond K. Graeber M.B. Lewis S.J.G. Naismith S.L. Glutathione relates to neuropsychological functioning in mild cognitive impairment Alzheimer’s Dement. 2014 10 67 75 10.1016/j.jalz.2013.01.005 23688577 

  74. 74. Mandal P.K. Shukla D. Tripathi M. Ersland L. Cognitive Improvement with Glutathione Supplement in Alzheimer’s Disease: A Way Forward J. Alzheimer’s Dis. 2019 1 5 10.3233/JAD-181054 30776003 

  75. 75. Rafamantanana M.H. Rozet E. Raoelison G.E. Cheuk K. Ratsimamanga S.U. Hubert P. Quetin-Leclercq J. An improved HPLC-UV method for the simultaneous quantification of triterpenic glycosides and aglycones in leaves of Centella asiatica (L.) Urb (APIACEAE) J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009 877 2396 2402 10.1016/j.jchromb.2009.03.018 19349219 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로