최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Science advances, v.5 no.5, 2019년, pp.eaav4119 -
Jin, Eunji (Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan 44919, Republic of Korea.) , Lee, In Seong (Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan 44919, Republic of Korea.) , Kim, Dongwook (Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan 44919, Republic of Korea.) , Lee, Hosoowi (Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.) , Jang, Woo-Dong (Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.) , Lah, Myung Soo (Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan 44919, Republic of Korea.) , Min, Seung Kyu (Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan 44919, Republic of Korea.) , Choe, Wonyoung (Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan 44919, Republic of Korea.)
A metal-organic framework based on porphyrin boxes exhibits metamaterial behavior.Mechanical metamaterials exhibit unusual properties, such as negative Poisson’s ratio, which are difficult to achieve in conventional materials. Rational design of mechanical metamaterials at the microscale is becoming...
1 Greaves G. N. , Greer A. L. , Lakes R. S. , Rouxel T. , Poisson’s ratio and modern materials . Nat. Mater. 10 , 823 – 837 ( 2011 ). 22020006
2 Bertoldi K. , Vitelli V. , Christensen J. , van Hecke M. , Flexible mechanical metamaterials . Nat. Rev. Mater. 2 , 17066 ( 2017 ).
3 Caddock D. , Evans K. E. , Microporous materials with negative Poisson’s ratio. I: Microstructure and mechanical properties . J. Phys. D. 22 , 1877 – 1882 ( 1989 ).
4 Evans K. E. , Nkansah M. A. , Hutchinson I. J. , Rogers S. C. , Molecular network design . Nature 353 , 124 ( 1991 ).
5 Keskar N. R. , Chelikowsky J. R. , Negative Poisson ratios in crystalline SiO 2 from first-principles calculations . Nature 358 , 222 – 224 ( 1992 ).
6 Baughman R. H. , Shacklette J. M. , Zakhidev A. A. , Stafström S. , Negative Poisson’s ratio as a common feature of cubic metals . Nature 392 , 362 – 365 ( 1998 ).
7 Baughman R. H. , Dantas S. O. , Stafström S. , Zakhidov A. A. , Mitchell T. B. , Dubin D. H. E. , Negative Poisson’s ratios for extreme states of matter . Science 288 , 2018 – 2022 ( 2000 ). 10856209
8 Hall L. J. , Coluci V. R. , Galvão D. S. , Kozlov M. E. , Zhang M. , Dantas S. O. , Baughman R. H. , Sign change of Poisson’s ratio for carbon nanotube sheets . Science 320 , 504 – 507 ( 2008 ). 18440923
9 Wu Y. , Yi N. , Huang L. , Zhang T. , Fang S. , Chang H. , Li N. , Oh J. , Lee J. A. , Kozlov M. , Chipara A. C. , Terrones H. , Xiao P. , Long G. , Huang Y. , Zhang F. , Zhang L. , Lepró X. , Haines C. , Lima M. D. , Lopez N. P. , Rajukumar L. P. , Elias A. L. , Feng S. , Kim S. J. , Narayanan N.T. , Ajayan P. M. , Terrones M. , Aliev A. , Chu P. , Zhang Z. , Baughman R. H. , Chen Y. , Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson’s ratio . Nat. Commun. 6 , 6141 ( 2015 ). 25601131
10 S. D. Poisson, Traité de Mécanique , vol. 2 ( 1811 ), p. 476.
11 Lakes R. , Foam structures with a negative Poisson’s ratio . Science 235 , 1038 – 1040 ( 1987 ). 17782252
12 Gibson L. J. , Ashby M. F. , Schajer G. S. , Robertson C. I. , The mechanics of two-dimensional cellular materials . Proc. R. Soc. London, A: Math. Phys. Sci. 382 , 25 – 42 ( 1982 ).
13 Grima J. N. , Evans K. E. , Auxetic behavior from rotating squares . J. Mater. Sci. Lett. 19 , 1563 – 1565 ( 2000 ).
14 G. N. Frederickson, Hinged Dissections: Swinging and Twisting (Cambridge, England; Cambridge Univ. Press, 2002).
15 D. Wells, Hidden Connections and Double Meanings (Cambridge, England: Cambridge Univ. Press, 1988).
16 D. Wells, The Penguin Dictionary of Curious and Interesting Geometry (London: Penguin Books, 1991).
17 Haeri A. Y. , Weidner D. J. , Parise J. B. , Elasticity of α-cristobalite: A silicon dioxide with a negative Poisson’s ratio . Science 257 , 650 – 652 ( 1992 ). 17740733
18 Grima J. N. , Jackson R. , Alderson A. , Evans K. E. , Do zeolites have negative Poisson’s ratios? Adv. Mater. B 12 , 1912 – 1918 ( 2000 ).
19 A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity (Dover, 1944).
20 Jiang J.-W. , Park H. S. , Negative Poisson’s ratio in single-layer black phosphorus . Nat. Commun. 5 , 4727 ( 2014 ). 25131569
21 Ho D. T. , Park S.-D. , Kwon S.-Y. , Park K. , Kim S. Y. , Negative Poisson’s ratios in metal nanoplates . Nat. Commun. 5 , 3255 ( 2014 ). 24492746
22 Jiang J.-W. , Park H. S. , Negative Poisson’s ratio in single-layer graphene ribbons . Nano Lett. 16 , 2657 – 2662 ( 2016 ). 26986994
23 Suzuki Y. , Cardone G. , Restrepo D. , Zavattieri P. D. , Baker T. S. , Tezcan F. A. , Self-assembly of coherently dynamic, auxetic, two-dimensional protein crystals . Nature 533 , 369 – 373 ( 2016 ). 27135928
24 Rocklin D. Z. , Zhou S. , Sun K. , Mao X. , Transformable topological mechanical metamaterials . Nat. Commun. 8 , 14201 ( 2017 ). 28112155
25 Yang Y. , You Z. , Geometry of transformable metamaterials inspired by modular origami . J. Mech. Robot. 10 , 021001 ( 2018 ).
26 Babaee S. , Shim J. , Weaver J. C. , Chen E. R. , Patel N. , Bertoldi K. , 3D soft metamaterials with negative Poisson’s ratio . Adv. Mater. 25 , 5044 – 5049 ( 2013 ). 23878067
27 Mizzi L. , Mahdi E. M. , Titov K. , Gatt R. , Attard D. , Evans K. E. , Grima J. N. , Tan J.-C. , Mechanical metamaterials with star-shaped pores exhibiting negative and zero Poisson’s ratio . Mater. Des. 146 , 28 – 37 ( 2018 ).
28 Eidini M. , Paulino G. H. , Unraveling metamaterial properties in zigzag-base folded sheets . Sci. Adv. 1 , e1500224 ( 2015 ). 26601253
29 Dybtsev D. N. , Chun H. , Kim K. , Rigid and flexible: A highly porous metal-organic framework with unusual guest-dependent dynamic behaviour . Angew. Chem. Int. Ed. 43 , 5033 – 5036 ( 2004 ).
30 Liu D. , Liu T.-F. , Chen Y.-P. , Zou L. , Feng D. , Wang K. , Zhang Q. , Yuan S. , Zhong C. , Zhou H.-C. , A reversible crystallinity-preserving phase transition in metal-organic frameworks: Discovery, mechanistic studies, and potential applications . J. Am. Chem. Soc. 137 , 7740 – 7746 ( 2015 ). 26011818
31 Li M. , Li D. , O’Keeffe M. , Yaghi O. M. , Topological analysis of metal-organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle . Chem. Rev. 114 , 1343 – 1370 ( 2014 ). 24191753
32 Moghadam P. Z. , Li A. , Wiggin S. B. , Tao A. , Maloney A. G. P. , Wood P. A. , Ward S. C. , Fairen-Jimenez D. , Development of a Cambridge structural database subset: A collection of metal–organic frameworks for past, present, and future . Chem. Mater. 29 , 2618 – 2625 ( 2017 ).
33 O’Keeffe M. , Peskov M. A. , Ramsden S. J. , Yaghi O. M. , The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets . Acc. Chem. Res. 41 , 1782 – 1789 ( 2008 ). 18834152
34 DeVries L. D. , Barron P. M. , Hurley E. P. , Hu C. H. , Choe W. , “Nanoscale lattice fence” in a metal-organic framework: Interplay between hinged topology and highly anisotropic thermal response . J. Am. Chem. Soc. 133 , 14848 – 14851 ( 2011 ). 21877719
35 Grobler I. , Smith V. J. , Bhatt P. M. , Herbert S. A. , Barbour L. J. , Tunable anisotropic thermal expansion of a porous zinc(II) metal-organic framework . J. Am. Chem. Soc. 135 , 6411 – 6414 ( 2013 ). 23581524
36 Schneemann A. , Bon V. , Schwedler I. , Kaskel S. , Fischer R. A. , Flexible metal-organic frameworks . Chem. Soc. Rev. 43 , 6062 – 6096 ( 2014 ). 24875583
37 Coudert F.-X. , Responsive metal–organic frameworks and framework materials: Under pressure, taking the heat, in the spotlight, with friends . Chem. Mater. 27 , 1905 – 1916 ( 2015 ).
38 Goodwin A. L. , Calleja M. , Conterio M. J. , Dove M. T. , Evans J. S. O. , Keen D. A. , Peters L. , Tucker M. G. , Colossal positive and negative thermal expansion in the framework material Ag 3 [Co(CN) 6 ] . Science 319 , 794 – 797 ( 2008 ). 18258911
39 Han S. S. , Goddard W. A. III , Metal-organic frameworks provide large negative thermal expansion behavior . J. Phys. Chem. C 111 , 15185 – 15191 ( 2007 ).
40 Li W. , Probert M. R. , Kosa M. , Bennett T. D. , Thirumurugan A. , Burwood R. P. , Parinello M. , Howard J. A. K. , Cheetham A. K. , Negative linear compressibility of a metal-organic framework . J. Am. Chem. Soc. 134 , 11940 – 11943 ( 2012 ). 22758218
41 Collings I. E. , Cairns A. B. , Thompson A. L. , Parker J. E. , Tang C. C. , Tucker M. G. , Catafesta J. , Levelut C. , Haines J. , Dmitriev V. , Pattison P. , Goodwin A. L. , Homologous critical behaviour in the molecular frameworks Zn(CN) 2 and Cd(imidazolate) 2 . J. Am. Chem. Soc. 135 , 7610 – 7620 ( 2013 ). 23607590
42 Ortiz A. U. , Boutin A. , Fuchs A. H. , Coudert F.-X. , Metal-organic frameworks with wine-rack motif: What determines their flexibility and elastic properties? J. Chem. Phys. 138 , 174703 ( 2013 ). 23656148
43 Ryder M. R. , Civalleri B. , Cinque G. , Tan J.-C. , Discovering connections between terahertz vibrations and elasticity underpinning the collective dynamics of the HKUST-1 metal-organic framework . CrstEngComm 18 , 4303 – 4312 ( 2016 ).
44 Ryder M. R. , Civalleri B. , Tan J.-C. , Isoreticular zirconium-based metal-organic frameworks: Discovering mechanical trends and elastic anomalies controlling chemical structure stability . Phys. Chem. Chem. Phys. 18 , 9079 – 9087 ( 2016 ). 26972778
45 Wei Y.-S. , Chen K.-J. , Liao P.-Q. , Zhu B.-Y. , Lin R.-B. , Zhou H.-L. , Wang B.-Y. , Xue W. , Zhang J.-P. , Chen X.-M. , Turning on the flexibility of isoreticular porous coordination frameworks for drastically tunable framework breathing and thermal expansion . Chem. Sci. 4 , 1539 – 1546 ( 2013 ).
46 Grima J. N. , Alderson A. , Evans K. E. , Auxetic behaviour from rotating rigid units . Phys. Status Solidi B 242 , 561 – 575 ( 2005 ).
47 Shin J. W. , Eom K. , Moon D. , BL2D-SMC, the supramolecular crystallography beamline at the pohang light source II, Korea . J. Synchrotron Rad. 23 , 369 – 373 ( 2016 ).
48 Otwinowski Z. , Minor W. , Processing of X-ray diffraction data collected in oscillation mode . Methods Enzymol. 276 , 307 – 326 ( 1997 ).
49 Sheldrick G. M. , Crystal structure refinement with SHELX . Acta Cryst. C71 , 3 – 8 ( 2015 ).
50 Spek A. L. , PLATON SQUEEZE: A tool for the calculation of the disordered solvent contribution to the calculated structure factors . Acta Cryst. C71 , 9 – 18 ( 2015 ).
51 Hammersley A. P. , Svensson S. O. , Hanfland M. , Fitch A. N. , Häusermann D. , Two-dimensional detector software: From real detector to idealised image or two-theta scan . High Press. Res. 14 , 235 – 248 ( 1996 ).
52 David W. I. F. , Shankland K. , van de Streek J. , Pidcock E. , Motherwell W. D. S. , Cole J. C. , DASH : A program for crystal structure determination from powder diffraction data . J Appl Crystallogr. 39 , 910 – 915 ( 2006 ).
53 Lipstman S. , Goldberg I. , Supramolecular crystal chemistry with porphyrin tinkertoys. Hydrogen-bonding and coordination networks with the “chair” and “table” conformers of tetra(3-carboxyphenyl)porphyrin . Cryst. Growth Des. 13 , 942 – 952 ( 2013 ).
54 Mary T. A. , Evans J. S. O. , Vogt T. , Sleight A. W. , Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW 2 O 8 . Science 272 , 90 – 92 ( 1996 ).
55 Yang C. , Wang X. P. , Omary M. A. , Crystallographic observation of dynamic gas adsorption sites and thermal expansion in a breathable fluorous metal-organic framework . Angew. Chem. Int. Ed. 48 , 2500 – 2505 ( 2009 ).
56 Das D. , Jacobs T. , Barbour L. J. , Exceptionally large positive and negative anisotropic thermal expansion of an organic crystalline material . Nat. Mater. 9 , 36 – 39 ( 2010 ). 19935666
57 Ogborn J. M. , Collings I. E. , Moggach S. A. , Thompson A. L. , Goodwin A. L. , Supramolecular mechanics in a metal–organic framework . Chem. Sci. 3 , 3011 – 3017 ( 2012 ).
58 Zhou H. L. , Lin R.-B. , He C.-T. , Zhang Y.-B. , Feng N. , Wang Q. , Deng F. , Zhang J.-P. , Chen X.-M. , Direct visualization of a guest-triggered crystal deformation based on a flexible ultramicroporous framework . Nat. Commun. 4 , 2534 ( 2013 ). 24067265
59 Panda M. K. , Runčevski T. , Sahoo S. C. , Belik A. A. , Nath N. K. , Dinnebier R. E. , Naumov P. , Colossal positive and negative thermal expansion and thermosalient effect in a pentamorphic organometallic martensite . Nat. Commun. 5 , 4811 ( 2014 ). 25185949
60 Cai W. , Katrusiak A. , Giant negative linear compression positively coupled to massive thermal expansion in a metal-organic framework . Nat. Commun. 5 , 4337 ( 2014 ). 24993679
61 Zhou H.-L. , Zhang Y.-B. , Zhang J.-P. , Chen X.-M. , Superamolecular-jack-like guest in ultramicroporous crystal for exceptional thermal expansion behaviour . Nat. Commun. 6 , 6917 ( 2015 ). 25898347
62 Hu J.-X. , Xu Y. , Meng Y.-S. , Zhao L. , Hayami S. , Sato O. , Liu T. , A material showing colossal positive and negative volumetric thermal expansion with hysteretic magnetic transition . Angew. Chem. Int. Ed. 56 , 13052 – 13055 ( 2017 ).
63 Henke S. , Schneemann A. , Fischer R. A. , Massive anisotropic thermal expansion and thermo–responsive breathing in metal–organic frameworks modulated by linker functionalization . Adv. Funct. Mater. 23 , 5990 – 5996 ( 2013 ).
64 Elstner M. , Porezag D. , Jungnickel G. , Elsner J. , Haugk M. , Frauenheim T. , Suhai S. , Seifert G. , Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties . Phys. Rev. B 58 , 7260 – 7268 ( 1998 ).
65 Lu X. , Gaus M. , Elstner M. , Cui Q. , Parametrization of DFTB3/3OB for magnesium and zinc for chemical and biological applications . J. Phys. Chem. B 119 , 1062 – 1082 ( 2015 ). 25178644
66 Gaus M. , Goez A. , Elstner M. , Parametrization and benchmark of DFTB3 for organic molecules . J. Chem. Theory Comput. 9 , 338 – 354 ( 2013 ). 26589037
67 Ravindran P. , Lars Fast P. A. , Korzhavyi P. A. , Johansson B. , Wills J. , Eriksson O. , Density functional theory for calculation of elastic properties of orthorhombic crystals: application to TiSi 2 . J. Appl. Phys. 84 , 4891 – 4904 ( 1998 ).
68 Reshak A. H. , Jamal M. , DFT calculation for elastic constants of tetragonal structure of crystalline solids with WIEN2k code: A new package (Tetra-elastic) . Int. J. Electrochem. Sci. 8 , 12252 – 12263 ( 2013 ).
69 Mouhat F. , Coudert F.-X. , Necessary and sufficient elastic stability conditions in various crystal systems . Phys. Rev. B 90 , 224104 ( 2014 ).
70 Ortiz A. U. , Boutin A. , Fuchs A. H. , Coudert F.-X. , Anisotropic elastic properties of flexible metal-organic frameworks: How soft are soft porous crystals? Phys. Rev. Lett. 109 , 195502 ( 2012 ). 23215398
71 Bahr D. F. , Reid J. A. , Mook W. M. , Bauer C. A. , Stumpf R. , Skulan A. J. , Moody N. R. , Simmons B. A. , Shindel M. M. , Allendorf M. D. , Mechanical properties of cubic zinc carboxylate IRMOF-1 metal-organic framework crystals . Phys. Rev. B 76 , 184106 ( 2007 ).
72 Tan J.-C. , Civalleri B. , Lin C.-C. , Valenzano L. , Galvelis R. , Chen P.-F. , Bennett T. D. , Mellot-Draznieks C. , Zicovich-Wilson C. M. , Cheetham A. K. , Exceptionally low shear modulus in a prototypical imidazole-based metal-organic framework . Phys. Rev. Lett. 108 , 095502 ( 2012 ). 22463647
73 Tan J.-C. , Civalleri B. , Erba A. , Albanese E. , Quantum mechanical predictions to elucidate the anisotropic elastic properties of zeolitic imidazolate frameworks: ZIF-4 vs. ZIF-zni . CrstEngComm 17 , 375 – 382 ( 2015 ).
74 Ryder M. R. , Tan J.-C. , Explaining the mechanical mechanisms of zeolitic metal-organic frameworks: Revealing auxeticity and anomalous elasticity . Dalton Trans. 45 , 4154 – 4161 ( 2016 ). 26426139
75 Coates C. S. , Ryder M. R. , Hill J. A. , Tan J.-C. , Goodwin A. L. , Large elastic recovery of zinc dicyanoaurate . APL Mater. 5 , 066107 ( 2017 ).
76 Ryder M. R. , Bennett T. D. , Kelley C. S. , Frogley M. D. , Cinque G. , Tan J.-C. , Tracking thermal-induced amorphization of a zeolitic imidazolate framework via synchrotron in situ far-infrared spectroscopy . Chem. Commun. 53 , 7041 – 7044 ( 2017 ).
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.