$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Metal-organic framework based on hinged cube tessellation as transformable mechanical metamaterial 원문보기

Science advances, v.5 no.5, 2019년, pp.eaav4119 -   

Jin, Eunji (Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan 44919, Republic of Korea.) ,  Lee, In Seong (Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan 44919, Republic of Korea.) ,  Kim, Dongwook (Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan 44919, Republic of Korea.) ,  Lee, Hosoowi (Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.) ,  Jang, Woo-Dong (Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.) ,  Lah, Myung Soo (Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan 44919, Republic of Korea.) ,  Min, Seung Kyu (Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan 44919, Republic of Korea.) ,  Choe, Wonyoung (Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan 44919, Republic of Korea.)

Abstract AI-Helper 아이콘AI-Helper

A metal-organic framework based on porphyrin boxes exhibits metamaterial behavior.Mechanical metamaterials exhibit unusual properties, such as negative Poisson’s ratio, which are difficult to achieve in conventional materials. Rational design of mechanical metamaterials at the microscale is becoming...

참고문헌 (76)

  1. 1 Greaves G. N. , Greer A. L. , Lakes R. S. , Rouxel T. , Poisson’s ratio and modern materials . Nat. Mater. 10 , 823 – 837 ( 2011 ). 22020006 

  2. 2 Bertoldi K. , Vitelli V. , Christensen J. , van Hecke M. , Flexible mechanical metamaterials . Nat. Rev. Mater. 2 , 17066 ( 2017 ). 

  3. 3 Caddock D. , Evans K. E. , Microporous materials with negative Poisson’s ratio. I: Microstructure and mechanical properties . J. Phys. D. 22 , 1877 – 1882 ( 1989 ). 

  4. 4 Evans K. E. , Nkansah M. A. , Hutchinson I. J. , Rogers S. C. , Molecular network design . Nature 353 , 124 ( 1991 ). 

  5. 5 Keskar N. R. , Chelikowsky J. R. , Negative Poisson ratios in crystalline SiO 2 from first-principles calculations . Nature 358 , 222 – 224 ( 1992 ). 

  6. 6 Baughman R. H. , Shacklette J. M. , Zakhidev A. A. , Stafström S. , Negative Poisson’s ratio as a common feature of cubic metals . Nature 392 , 362 – 365 ( 1998 ). 

  7. 7 Baughman R. H. , Dantas S. O. , Stafström S. , Zakhidov A. A. , Mitchell T. B. , Dubin D. H. E. , Negative Poisson’s ratios for extreme states of matter . Science 288 , 2018 – 2022 ( 2000 ). 10856209 

  8. 8 Hall L. J. , Coluci V. R. , Galvão D. S. , Kozlov M. E. , Zhang M. , Dantas S. O. , Baughman R. H. , Sign change of Poisson’s ratio for carbon nanotube sheets . Science 320 , 504 – 507 ( 2008 ). 18440923 

  9. 9 Wu Y. , Yi N. , Huang L. , Zhang T. , Fang S. , Chang H. , Li N. , Oh J. , Lee J. A. , Kozlov M. , Chipara A. C. , Terrones H. , Xiao P. , Long G. , Huang Y. , Zhang F. , Zhang L. , Lepró X. , Haines C. , Lima M. D. , Lopez N. P. , Rajukumar L. P. , Elias A. L. , Feng S. , Kim S. J. , Narayanan N.T. , Ajayan P. M. , Terrones M. , Aliev A. , Chu P. , Zhang Z. , Baughman R. H. , Chen Y. , Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson’s ratio . Nat. Commun. 6 , 6141 ( 2015 ). 25601131 

  10. 10 S. D. Poisson, Traité de Mécanique , vol. 2 ( 1811 ), p. 476. 

  11. 11 Lakes R. , Foam structures with a negative Poisson’s ratio . Science 235 , 1038 – 1040 ( 1987 ). 17782252 

  12. 12 Gibson L. J. , Ashby M. F. , Schajer G. S. , Robertson C. I. , The mechanics of two-dimensional cellular materials . Proc. R. Soc. London, A: Math. Phys. Sci. 382 , 25 – 42 ( 1982 ). 

  13. 13 Grima J. N. , Evans K. E. , Auxetic behavior from rotating squares . J. Mater. Sci. Lett. 19 , 1563 – 1565 ( 2000 ). 

  14. 14 G. N. Frederickson, Hinged Dissections: Swinging and Twisting (Cambridge, England; Cambridge Univ. Press, 2002). 

  15. 15 D. Wells, Hidden Connections and Double Meanings (Cambridge, England: Cambridge Univ. Press, 1988). 

  16. 16 D. Wells, The Penguin Dictionary of Curious and Interesting Geometry (London: Penguin Books, 1991). 

  17. 17 Haeri A. Y. , Weidner D. J. , Parise J. B. , Elasticity of α-cristobalite: A silicon dioxide with a negative Poisson’s ratio . Science 257 , 650 – 652 ( 1992 ). 17740733 

  18. 18 Grima J. N. , Jackson R. , Alderson A. , Evans K. E. , Do zeolites have negative Poisson’s ratios? Adv. Mater. B 12 , 1912 – 1918 ( 2000 ). 

  19. 19 A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity (Dover, 1944). 

  20. 20 Jiang J.-W. , Park H. S. , Negative Poisson’s ratio in single-layer black phosphorus . Nat. Commun. 5 , 4727 ( 2014 ). 25131569 

  21. 21 Ho D. T. , Park S.-D. , Kwon S.-Y. , Park K. , Kim S. Y. , Negative Poisson’s ratios in metal nanoplates . Nat. Commun. 5 , 3255 ( 2014 ). 24492746 

  22. 22 Jiang J.-W. , Park H. S. , Negative Poisson’s ratio in single-layer graphene ribbons . Nano Lett. 16 , 2657 – 2662 ( 2016 ). 26986994 

  23. 23 Suzuki Y. , Cardone G. , Restrepo D. , Zavattieri P. D. , Baker T. S. , Tezcan F. A. , Self-assembly of coherently dynamic, auxetic, two-dimensional protein crystals . Nature 533 , 369 – 373 ( 2016 ). 27135928 

  24. 24 Rocklin D. Z. , Zhou S. , Sun K. , Mao X. , Transformable topological mechanical metamaterials . Nat. Commun. 8 , 14201 ( 2017 ). 28112155 

  25. 25 Yang Y. , You Z. , Geometry of transformable metamaterials inspired by modular origami . J. Mech. Robot. 10 , 021001 ( 2018 ). 

  26. 26 Babaee S. , Shim J. , Weaver J. C. , Chen E. R. , Patel N. , Bertoldi K. , 3D soft metamaterials with negative Poisson’s ratio . Adv. Mater. 25 , 5044 – 5049 ( 2013 ). 23878067 

  27. 27 Mizzi L. , Mahdi E. M. , Titov K. , Gatt R. , Attard D. , Evans K. E. , Grima J. N. , Tan J.-C. , Mechanical metamaterials with star-shaped pores exhibiting negative and zero Poisson’s ratio . Mater. Des. 146 , 28 – 37 ( 2018 ). 

  28. 28 Eidini M. , Paulino G. H. , Unraveling metamaterial properties in zigzag-base folded sheets . Sci. Adv. 1 , e1500224 ( 2015 ). 26601253 

  29. 29 Dybtsev D. N. , Chun H. , Kim K. , Rigid and flexible: A highly porous metal-organic framework with unusual guest-dependent dynamic behaviour . Angew. Chem. Int. Ed. 43 , 5033 – 5036 ( 2004 ). 

  30. 30 Liu D. , Liu T.-F. , Chen Y.-P. , Zou L. , Feng D. , Wang K. , Zhang Q. , Yuan S. , Zhong C. , Zhou H.-C. , A reversible crystallinity-preserving phase transition in metal-organic frameworks: Discovery, mechanistic studies, and potential applications . J. Am. Chem. Soc. 137 , 7740 – 7746 ( 2015 ). 26011818 

  31. 31 Li M. , Li D. , O’Keeffe M. , Yaghi O. M. , Topological analysis of metal-organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle . Chem. Rev. 114 , 1343 – 1370 ( 2014 ). 24191753 

  32. 32 Moghadam P. Z. , Li A. , Wiggin S. B. , Tao A. , Maloney A. G. P. , Wood P. A. , Ward S. C. , Fairen-Jimenez D. , Development of a Cambridge structural database subset: A collection of metal–organic frameworks for past, present, and future . Chem. Mater. 29 , 2618 – 2625 ( 2017 ). 

  33. 33 O’Keeffe M. , Peskov M. A. , Ramsden S. J. , Yaghi O. M. , The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets . Acc. Chem. Res. 41 , 1782 – 1789 ( 2008 ). 18834152 

  34. 34 DeVries L. D. , Barron P. M. , Hurley E. P. , Hu C. H. , Choe W. , “Nanoscale lattice fence” in a metal-organic framework: Interplay between hinged topology and highly anisotropic thermal response . J. Am. Chem. Soc. 133 , 14848 – 14851 ( 2011 ). 21877719 

  35. 35 Grobler I. , Smith V. J. , Bhatt P. M. , Herbert S. A. , Barbour L. J. , Tunable anisotropic thermal expansion of a porous zinc(II) metal-organic framework . J. Am. Chem. Soc. 135 , 6411 – 6414 ( 2013 ). 23581524 

  36. 36 Schneemann A. , Bon V. , Schwedler I. , Kaskel S. , Fischer R. A. , Flexible metal-organic frameworks . Chem. Soc. Rev. 43 , 6062 – 6096 ( 2014 ). 24875583 

  37. 37 Coudert F.-X. , Responsive metal–organic frameworks and framework materials: Under pressure, taking the heat, in the spotlight, with friends . Chem. Mater. 27 , 1905 – 1916 ( 2015 ). 

  38. 38 Goodwin A. L. , Calleja M. , Conterio M. J. , Dove M. T. , Evans J. S. O. , Keen D. A. , Peters L. , Tucker M. G. , Colossal positive and negative thermal expansion in the framework material Ag 3 [Co(CN) 6 ] . Science 319 , 794 – 797 ( 2008 ). 18258911 

  39. 39 Han S. S. , Goddard W. A. III , Metal-organic frameworks provide large negative thermal expansion behavior . J. Phys. Chem. C 111 , 15185 – 15191 ( 2007 ). 

  40. 40 Li W. , Probert M. R. , Kosa M. , Bennett T. D. , Thirumurugan A. , Burwood R. P. , Parinello M. , Howard J. A. K. , Cheetham A. K. , Negative linear compressibility of a metal-organic framework . J. Am. Chem. Soc. 134 , 11940 – 11943 ( 2012 ). 22758218 

  41. 41 Collings I. E. , Cairns A. B. , Thompson A. L. , Parker J. E. , Tang C. C. , Tucker M. G. , Catafesta J. , Levelut C. , Haines J. , Dmitriev V. , Pattison P. , Goodwin A. L. , Homologous critical behaviour in the molecular frameworks Zn(CN) 2 and Cd(imidazolate) 2 . J. Am. Chem. Soc. 135 , 7610 – 7620 ( 2013 ). 23607590 

  42. 42 Ortiz A. U. , Boutin A. , Fuchs A. H. , Coudert F.-X. , Metal-organic frameworks with wine-rack motif: What determines their flexibility and elastic properties? J. Chem. Phys. 138 , 174703 ( 2013 ). 23656148 

  43. 43 Ryder M. R. , Civalleri B. , Cinque G. , Tan J.-C. , Discovering connections between terahertz vibrations and elasticity underpinning the collective dynamics of the HKUST-1 metal-organic framework . CrstEngComm 18 , 4303 – 4312 ( 2016 ). 

  44. 44 Ryder M. R. , Civalleri B. , Tan J.-C. , Isoreticular zirconium-based metal-organic frameworks: Discovering mechanical trends and elastic anomalies controlling chemical structure stability . Phys. Chem. Chem. Phys. 18 , 9079 – 9087 ( 2016 ). 26972778 

  45. 45 Wei Y.-S. , Chen K.-J. , Liao P.-Q. , Zhu B.-Y. , Lin R.-B. , Zhou H.-L. , Wang B.-Y. , Xue W. , Zhang J.-P. , Chen X.-M. , Turning on the flexibility of isoreticular porous coordination frameworks for drastically tunable framework breathing and thermal expansion . Chem. Sci. 4 , 1539 – 1546 ( 2013 ). 

  46. 46 Grima J. N. , Alderson A. , Evans K. E. , Auxetic behaviour from rotating rigid units . Phys. Status Solidi B 242 , 561 – 575 ( 2005 ). 

  47. 47 Shin J. W. , Eom K. , Moon D. , BL2D-SMC, the supramolecular crystallography beamline at the pohang light source II, Korea . J. Synchrotron Rad. 23 , 369 – 373 ( 2016 ). 

  48. 48 Otwinowski Z. , Minor W. , Processing of X-ray diffraction data collected in oscillation mode . Methods Enzymol. 276 , 307 – 326 ( 1997 ). 

  49. 49 Sheldrick G. M. , Crystal structure refinement with SHELX . Acta Cryst. C71 , 3 – 8 ( 2015 ). 

  50. 50 Spek A. L. , PLATON SQUEEZE: A tool for the calculation of the disordered solvent contribution to the calculated structure factors . Acta Cryst. C71 , 9 – 18 ( 2015 ). 

  51. 51 Hammersley A. P. , Svensson S. O. , Hanfland M. , Fitch A. N. , Häusermann D. , Two-dimensional detector software: From real detector to idealised image or two-theta scan . High Press. Res. 14 , 235 – 248 ( 1996 ). 

  52. 52 David W. I. F. , Shankland K. , van de Streek J. , Pidcock E. , Motherwell W. D. S. , Cole J. C. , DASH : A program for crystal structure determination from powder diffraction data . J Appl Crystallogr. 39 , 910 – 915 ( 2006 ). 

  53. 53 Lipstman S. , Goldberg I. , Supramolecular crystal chemistry with porphyrin tinkertoys. Hydrogen-bonding and coordination networks with the “chair” and “table” conformers of tetra(3-carboxyphenyl)porphyrin . Cryst. Growth Des. 13 , 942 – 952 ( 2013 ). 

  54. 54 Mary T. A. , Evans J. S. O. , Vogt T. , Sleight A. W. , Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW 2 O 8 . Science 272 , 90 – 92 ( 1996 ). 

  55. 55 Yang C. , Wang X. P. , Omary M. A. , Crystallographic observation of dynamic gas adsorption sites and thermal expansion in a breathable fluorous metal-organic framework . Angew. Chem. Int. Ed. 48 , 2500 – 2505 ( 2009 ). 

  56. 56 Das D. , Jacobs T. , Barbour L. J. , Exceptionally large positive and negative anisotropic thermal expansion of an organic crystalline material . Nat. Mater. 9 , 36 – 39 ( 2010 ). 19935666 

  57. 57 Ogborn J. M. , Collings I. E. , Moggach S. A. , Thompson A. L. , Goodwin A. L. , Supramolecular mechanics in a metal–organic framework . Chem. Sci. 3 , 3011 – 3017 ( 2012 ). 

  58. 58 Zhou H. L. , Lin R.-B. , He C.-T. , Zhang Y.-B. , Feng N. , Wang Q. , Deng F. , Zhang J.-P. , Chen X.-M. , Direct visualization of a guest-triggered crystal deformation based on a flexible ultramicroporous framework . Nat. Commun. 4 , 2534 ( 2013 ). 24067265 

  59. 59 Panda M. K. , Runčevski T. , Sahoo S. C. , Belik A. A. , Nath N. K. , Dinnebier R. E. , Naumov P. , Colossal positive and negative thermal expansion and thermosalient effect in a pentamorphic organometallic martensite . Nat. Commun. 5 , 4811 ( 2014 ). 25185949 

  60. 60 Cai W. , Katrusiak A. , Giant negative linear compression positively coupled to massive thermal expansion in a metal-organic framework . Nat. Commun. 5 , 4337 ( 2014 ). 24993679 

  61. 61 Zhou H.-L. , Zhang Y.-B. , Zhang J.-P. , Chen X.-M. , Superamolecular-jack-like guest in ultramicroporous crystal for exceptional thermal expansion behaviour . Nat. Commun. 6 , 6917 ( 2015 ). 25898347 

  62. 62 Hu J.-X. , Xu Y. , Meng Y.-S. , Zhao L. , Hayami S. , Sato O. , Liu T. , A material showing colossal positive and negative volumetric thermal expansion with hysteretic magnetic transition . Angew. Chem. Int. Ed. 56 , 13052 – 13055 ( 2017 ). 

  63. 63 Henke S. , Schneemann A. , Fischer R. A. , Massive anisotropic thermal expansion and thermo–responsive breathing in metal–organic frameworks modulated by linker functionalization . Adv. Funct. Mater. 23 , 5990 – 5996 ( 2013 ). 

  64. 64 Elstner M. , Porezag D. , Jungnickel G. , Elsner J. , Haugk M. , Frauenheim T. , Suhai S. , Seifert G. , Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties . Phys. Rev. B 58 , 7260 – 7268 ( 1998 ). 

  65. 65 Lu X. , Gaus M. , Elstner M. , Cui Q. , Parametrization of DFTB3/3OB for magnesium and zinc for chemical and biological applications . J. Phys. Chem. B 119 , 1062 – 1082 ( 2015 ). 25178644 

  66. 66 Gaus M. , Goez A. , Elstner M. , Parametrization and benchmark of DFTB3 for organic molecules . J. Chem. Theory Comput. 9 , 338 – 354 ( 2013 ). 26589037 

  67. 67 Ravindran P. , Lars Fast P. A. , Korzhavyi P. A. , Johansson B. , Wills J. , Eriksson O. , Density functional theory for calculation of elastic properties of orthorhombic crystals: application to TiSi 2 . J. Appl. Phys. 84 , 4891 – 4904 ( 1998 ). 

  68. 68 Reshak A. H. , Jamal M. , DFT calculation for elastic constants of tetragonal structure of crystalline solids with WIEN2k code: A new package (Tetra-elastic) . Int. J. Electrochem. Sci. 8 , 12252 – 12263 ( 2013 ). 

  69. 69 Mouhat F. , Coudert F.-X. , Necessary and sufficient elastic stability conditions in various crystal systems . Phys. Rev. B 90 , 224104 ( 2014 ). 

  70. 70 Ortiz A. U. , Boutin A. , Fuchs A. H. , Coudert F.-X. , Anisotropic elastic properties of flexible metal-organic frameworks: How soft are soft porous crystals? Phys. Rev. Lett. 109 , 195502 ( 2012 ). 23215398 

  71. 71 Bahr D. F. , Reid J. A. , Mook W. M. , Bauer C. A. , Stumpf R. , Skulan A. J. , Moody N. R. , Simmons B. A. , Shindel M. M. , Allendorf M. D. , Mechanical properties of cubic zinc carboxylate IRMOF-1 metal-organic framework crystals . Phys. Rev. B 76 , 184106 ( 2007 ). 

  72. 72 Tan J.-C. , Civalleri B. , Lin C.-C. , Valenzano L. , Galvelis R. , Chen P.-F. , Bennett T. D. , Mellot-Draznieks C. , Zicovich-Wilson C. M. , Cheetham A. K. , Exceptionally low shear modulus in a prototypical imidazole-based metal-organic framework . Phys. Rev. Lett. 108 , 095502 ( 2012 ). 22463647 

  73. 73 Tan J.-C. , Civalleri B. , Erba A. , Albanese E. , Quantum mechanical predictions to elucidate the anisotropic elastic properties of zeolitic imidazolate frameworks: ZIF-4 vs. ZIF-zni . CrstEngComm 17 , 375 – 382 ( 2015 ). 

  74. 74 Ryder M. R. , Tan J.-C. , Explaining the mechanical mechanisms of zeolitic metal-organic frameworks: Revealing auxeticity and anomalous elasticity . Dalton Trans. 45 , 4154 – 4161 ( 2016 ). 26426139 

  75. 75 Coates C. S. , Ryder M. R. , Hill J. A. , Tan J.-C. , Goodwin A. L. , Large elastic recovery of zinc dicyanoaurate . APL Mater. 5 , 066107 ( 2017 ). 

  76. 76 Ryder M. R. , Bennett T. D. , Kelley C. S. , Frogley M. D. , Cinque G. , Tan J.-C. , Tracking thermal-induced amorphization of a zeolitic imidazolate framework via synchrotron in situ far-infrared spectroscopy . Chem. Commun. 53 , 7041 – 7044 ( 2017 ). 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로