$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Toughening Effect of Rodlike Cellulose Nanocrystals in Epoxy Adhesive

Acs applied polymer materials, v.2 no.3, 2020년, pp.1234 - 1243  

Pruksawan, Sirawit (Research and Services Division of Materials Data and Integrated System (MaDIS) , National Institute for Materials Science (NIMS) , 1-2-1 Sengen , Tsukuba , Ibaraki 305-0047 , Japan) ,  Samitsu, Sadaki (Department of Chemistry for Materials, Graduate School of Engineering , Mie University , 1577 Kurimamachiya , Tsu , Mie 514-8507 , Japan) ,  Fujii, Yoshihisa (Department of Chemistry for Materials, Graduate School of Engineering , Mie University , 1577 Kurimamachiya , Tsu , Mie 514-8507 , Japan) ,  Torikai, Naoya ,  Naito, Masanobu

Abstract AI-Helper 아이콘AI-Helper

Epoxy structural adhesives have been used extensively in the automotive and aerospace industries to bond assembly parts. Much effort has been devoted to enhancing the mechanical properties of epoxy resin by incorporating fillers. Among a variety of fillers investigated for this purpose, nanocellulos...

주제어

참고문헌 (50)

  1. Adhesion Science Comyn J. 1997 10.1039/9781847550064 1 

  2. Adhesion Science: Principles and Practice Abbott S. 2015 1 

  3. Çeçen, Volkan, Sarikanat, Mehmet, Yildiz, Hasan, Tavman, Ismail H.. Comparison of mechanical properties of epoxy composites reinforced with stitched glass and carbon fabrics: Characterization of mechanical anisotropy in composites and investigation on the interaction between fiber and epoxy matrix. Polymer composites, vol.29, no.8, 840-853.

  4. Adachi, T., Osaki, M., Araki, W., Kwon, S.C.. Fracture toughness of nano- and micro-spherical silica-particle-filled epoxy composites. Acta materialia, vol.56, no.9, 2101-2109.

  5. Zappalorto, M., Salviato, M., Quaresimin, M.. Mixed mode (I+II) fracture toughness of polymer nanoclay nanocomposites. Engineering fracture mechanics, vol.111, 50-64.

  6. Tang, L.c., Zhang, H., Han, J.h., Wu, X.p., Zhang, Z.. Fracture mechanisms of epoxy filled with ozone functionalized multi-wall carbon nanotubes. Composites science and technology, vol.72, no.1, 7-13.

  7. Shokrieh, M. M., Ghoreishi, S. M., Esmkhani, M., Zhao, Z.. Effects of graphene nanoplatelets and graphene nanosheets on fracture toughness of epoxy nanocomposites. Fatigue & fracture of engineering materials & structures, vol.37, no.10, 1116-1123.

  8. Dufresne, A.. Nanocellulose: a new ageless bionanomaterial. Materials today, vol.16, no.6, 220-227.

  9. Klemm, Dieter, Kramer, Friederike, Moritz, Sebastian, Lindström, Tom, Ankerfors, Mikael, Gray, Derek, Dorris, Annie. Nanocelluloses: A New Family of Nature‐Based Materials. Angewandte Chemie. international edition, vol.50, no.24, 5438-5466.

  10. Isogai, Akira, Bergström, Lennart. Preparation of cellulose nanofibers using green and sustainable chemistry. Current opinion in green and sustainable chemistry, vol.12, 15-21.

  11. Ansari, F., Galland, S., Johansson, M., Plummer, C.J.G., Berglund, L.A.. Cellulose nanofiber network for moisture stable, strong and ductile biocomposites and increased epoxy curing rate. Composites. Part A, Applied science and manufacturing, vol.63, 35-44.

  12. Yano, H., Sugiyama, J., Nakagaito, A. N., Nogi, M., Matsuura, T., Hikita, M., Handa, K.. Optically Transparent Composites Reinforced with Networks of Bacterial Nanofibers. Advanced materials, vol.17, no.2, 153-155.

  13. Lee, Koon-Yang, Tammelin, Tekla, Schulfter, Kerstin, Kiiskinen, Harri, Samela, Juha, Bismarck, Alexander. High Performance Cellulose Nanocomposites: Comparing the Reinforcing Ability of Bacterial Cellulose and Nanofibrillated Cellulose. ACS applied materials & interfaces, vol.4, no.8, 4078-4086.

  14. Xu, S., Girouard, N., Schueneman, G., Shofner, M.L., Meredith, J.C.. Mechanical and thermal properties of waterborne epoxy composites containing cellulose nanocrystals. Polymer, vol.54, no.24, 6589-6598.

  15. ICCM International Conferences on Composite Materials Deng X. 20 2017 

  16. Tang, Liming, Weder, Christoph. Cellulose Whisker/Epoxy Resin Nanocomposites. ACS applied materials & interfaces, vol.2, no.4, 1073-1080.

  17. Kuo, Pei-Yu, Barros, Luizmar de Assis, Yan, Ning, Sain, Mohini, Qing, Yan, Wu, Yiqiang. Nanocellulose composites with enhanced interfacial compatibility and mechanical properties using a hybrid-toughened epoxy matrix. Carbohydrate polymers, vol.177, 249-257.

  18. Veigel, Stefan, Müller, Ulrich, Keckes, Jozef, Obersriebnig, Michael, Gindl-Altmutter, Wolfgang. Cellulose nanofibrils as filler for adhesives: effect on specific fracture energy of solid wood-adhesive bonds. Cellulose, vol.18, no.5, 1227-1237.

  19. Cataldi, Annalisa, Berglund, Lars, Deflorian, Flavio, Pegoretti, Alessandro. A comparison between micro- and nanocellulose-filled composite adhesives for oil paintings restoration. Nanocomposites, vol.1, no.4, 195-203.

  20. Araki, Jun, Arita, Toshihiko. Production of Ultrafine Dry Powders of Surface-intact and Unmodified Cellulose Nanowhiskers via Homogenization in Nonpolar Organic Solvents. Chemistry letters, vol.46, no.9, 1438-1441.

  21. Masunaga, Hiroyasu, Ogawa, Hiroki, Takano, Takumi, Sasaki, Sono, Goto, Shunji, Tanaka, Takashi, Seike, Takamitsu, Takahashi, Sunao, Takeshita, Kunikazu, Nariyama, Nobuteru, Ohashi, Haruhiko, Ohata, Toru, Furukawa, Yukito, Matsushita, Tomohiro, Ishizawa, Yasuhide, Yagi, Naoto, Takata, Masaki, Kitamura, Hideo, Sakurai, Kazuo, Tashiro, Kohji, Takahara, Atsushi, Amamiya, Yoshiyuki, Horie, Kazuyuki, Takenaka, Mikihito, Kanaya, Toshiji, Jinnai, Hiroshi, Okuda, Hiroshi, Akiba, Isamu, Takahashi, Isao, Yamamoto, Katsuhiro, Hikosaka, Masamichi, Sakurai, Shinichi, Shinohara, Yuya, Okada, Akihiko, Sugihara, Yasunori. Multipurpose soft-material SAXS/WAXS/GISAXS beamline at SPring-8. Polymer journal, vol.43, no.5, 471-477.

  22. Jojibabu, P., Jagannatham, M., Haridoss, P., Janaki Ram, G.D., Deshpande, A.P., Bakshi, S.R.. Effect of different carbon nano-fillers on rheological properties and lap shear strength of epoxy adhesive joints. Composites. Part A, Applied science and manufacturing, vol.82, 53-64.

  23. Pruksawan, Sirawit, Samitsu, Sadaki, Yokoyama, Hideaki, Naito, Masanobu. Homogeneously Dispersed Polyrotaxane in Epoxy Adhesive and Its Improvement in the Fracture Toughness. Macromolecules, vol.52, no.6, 2464-2475.

  24. Pruksawan, Sirawit, Lambard, Guillaume, Samitsu, Sadaki, Sodeyama, Keitaro, Naito, Masanobu. Prediction and optimization of epoxy adhesive strength from a small dataset through active learning. Science and technology of advanced materials, vol.20, no.1, 1010-1021.

  25. Rolando, T. Flexible Packaging - Adhesives, Coatings and Processes . Rappa Review Reports, Report 122; Rappa Tehcnology, Ltd. 2000. 

  26. Polyethylene Film Extrusion: A Process Manual Gregory B. H. 2009 1 

  27. Trinidad, J., Chen, L., Lian, A., Zhao, B.. Solvent presence and its impact on the lap-shear strength of SDS-decorated graphene hybrid electrically conductive adhesives. International journal of adhesion and adhesives, vol.78, 102-110.

  28. Enqvist, Evelina, Ramanenka, Dmitrij, Marques, Paula A.A.P., Gracio, José, Emami, Nazanin. The effect of ball milling time and rotational speed on ultra high molecular weight polyethylene reinforced with multiwalled carbon nanotubes. Polymer composites, vol.37, no.4, 1128-1136.

  29. 10.3144/expresspolymlett.2012.85 

  30. Cui, Zhanchen, Lü, Changli, Yang, Bai, Shen, Jiacong, Su, Xiaoping, Yang, Hai. The research on syntheses and properties of novel epoxy/polymercaptan curing optical resins with high refractive indices. Polymer, vol.42, no.26, 10095-10100.

  31. Germiniani, Luiz G. L., da Silva, Laura C. E., Plivelic, Tomás S., Gonçalves, Maria C.. Poly(ε-caprolactone)/cellulose nanocrystal nanocomposite mechanical reinforcement and morphology: the role of nanocrystal pre-dispersion. Journal of materials science, vol.54, no.1, 414-426.

  32. Fallon, J. J., Kolb, B. Q., Herwig, C. J., Foster, E. J., Bortner, M. J.. Mechanically adaptive thermoplastic polyurethane/cellulose nanocrystal composites: Process‐driven structure–property relationships. Journal of applied polymer science, vol.136, no.4, 46992-.

  33. Weir, Michael P., Johnson, David W., Boothroyd, Stephen C., Savage, Rebecca C., Thompson, Richard L., Parnell, Steven R., Parnell, Andrew J., King, Stephen M., Rogers, Sarah E., Coleman, Karl S., Clarke, Nigel. Extrinsic Wrinkling and Single Exfoliated Sheets of Graphene Oxide in Polymer Composites. Chemistry of materials : a publication of the American Chemical Society, vol.28, no.6, 1698-1704.

  34. Woodhead Publishing Series in Biomaterials Das O. 375 2017 

  35. Fu, Shao-Yun, Lauke, Bernd. The elastic modulus of misaligned short-fiber-reinforced polymers. Composites science and technology, vol.58, no.3, 389-400.

  36. Thomason, J.L., Vlug, M.A.. Influence of fibre length and concentration on the properties of glass fibre-reinforced polypropylene: 1. Tensile and flexural modulus. Composites. Part A, Applied science and manufacturing, vol.27, no.6, 477-484.

  37. Guo, Qian, Zhu, Pengli, Li, Gang, Huang, Liang, Zhang, Yu, Lu, Daoqiang Daniel, Sun, Rong, Wong, Chingping. One-pot synthesis of bimodal silica nanospheres and their effects on the rheological and thermal-mechanical properties of silica-epoxy composites. RSC advances, vol.5, no.62, 50073-50081.

  38. Diaz, Jairo A., Wu, Xiawa, Martini, Ashlie, Youngblood, Jeffrey P., Moon, Robert J.. Thermal Expansion of Self-Organized and Shear-Oriented Cellulose Nanocrystal Films. Biomacromolecules, vol.14, no.8, 2900-2908.

  39. Sun, Yangyang, Zhang, Zhuqing, Moon, Kyoung-Sik, Wong, C. P.. Glass transition and relaxation behavior of epoxy nanocomposites. Journal of polymer science Part B, Polymer physics, vol.42, no.21, 3849-3858.

  40. Corcione, Carola Esposito, Frigione, Mariaenrica. Characterization of Nanocomposites by Thermal Analysis. Materials, vol.5, no.12, 2960-2980.

  41. Tang, L.C., Wan, Y.J., Peng, K., Pei, Y.B., Wu, L.B., Chen, L.M., Shu, L.J., Jiang, J.X., Lai, G.Q.. Fracture toughness and electrical conductivity of epoxy composites filled with carbon nanotubes and spherical particles. Composites. Part A, Applied science and manufacturing, vol.45, 95-101.

  42. Domun, N., Hadavinia, H., Zhang, T., Sainsbury, T., Liaghat, G. H., Vahid, S.. Improving the fracture toughness and the strength of epoxy using nanomaterials - a review of the current status. Nanoscale, vol.7, no.23, 10294-10329.

  43. Adhesion And Adhesives: Science And Technology Kinloch A. 1987 10.1007/978-94-015-7764-9 1 

  44. Gupta, Sunil Kumar, Shukla, Dharmendra Kumar, Kaustubh Ravindra, Dhake. Effect of nanoalumina in epoxy adhesive on lap shear strength and fracture toughness of aluminium joints. The Journal of adhesion, vol.97, no.2, 117-139.

  45. Srivastava, V.K.. Effect of carbon nanotubes on the strength of adhesive lap joints of C/C and C/C–SiC ceramic fibre composites. International journal of adhesion and adhesives, vol.31, no.6, 486-489.

  46. Weiszgraeber, P., Becker, W.. Finite Fracture Mechanics model for mixed mode fracture in adhesive joints. International journal of solids and structures, vol.50, no.14, 2383-2394.

  47. Brooker, R. D., Kinloch, A. J., Taylor, A. C.. The Morphology and Fracture Properties of Thermoplastic-Toughened Epoxy Polymers. The Journal of adhesion, vol.86, no.7, 726-741.

  48. 10.4172/2169-0022.1000109 

  49. Woodhead Publishing Series in Composites Science and Engineering Shokrieh M. M. 295 2015 

  50. Stein, N., Weißgraeber, P., Becker, W.. Brittle failure in adhesive lap joints - a general Finite Fracture Mechanics approach. Procedia structural integrity, vol.2, 1967-1974.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로