$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Engineering Stable Pseudomonas putida S12 by CRISPR for 2,5-Furandicarboxylic Acid (FDCA) Production

ACS Synthetic biology, v.9 no.5, 2020년, pp.1138 - 1149  

Pham, Nam Ngoc (Department of Chemical Engineering , National Tsing Hua University , Hsinchu 30013 , Taiwan) ,  Chen, Cho-Yi (Department of Chemical Engineering , National Tsing Hua University , Hsinchu 30013 , Taiwan) ,  Li, Hung (Department of Chemical Engineering , National Tsing Hua University , Hsinchu 30013 , Taiwan) ,  Nguyen, Mai Thanh Thi (Faculty of Chemistry, University of Science , Vietnam National University Ho Chi Minh City , Ho Chi Minh City 72711 , Vietnam) ,  Nguyen, Phung Kim Phi (Faculty of Chemistry, University of Science , Vietnam National University Ho Chi Minh City , Ho Chi Minh City 72711 , Vietnam) ,  Tsai, Shen-Long (Department of Chemical Engineering , National Taiwan University of Science and Technology , Taipei 10607 , Taiwan) ,  Chou, June-Yen (Innovation and R&D Division , Chang Chun Group , Taipei 10483 , Taiwan) ,  Ramli, Theresia Cecylia (Department of Chemical Engineering , National Tsing Hua University , Hsinchu 30013) ,  Hu, Yu-Chen

Abstract AI-Helper 아이콘AI-Helper

FDCA (2,5-furandicarboxylic acid) can be enzymatically converted from HMF (5-hydroxymethylfurfural). Pseudomonas putida S12 is promising for FDCA production, but generating stable P. putida S12 is difficult due to its polyploidy and lack of genome engineering tools. Here we showed that coupling CRIS...

주제어

참고문헌 (64)

  1. 10.4014/jmb.1808.08057 

  2. 10.2172/15008859 

  3. Sheldon, Roger A., Woodley, John M.. Role of Biocatalysis in Sustainable Chemistry. Chemical reviews, vol.118, no.2, 801-838.

  4. Kroger, M., Prusse, U., Vorlop, K.-D.. A new approach for the production of 2,5-furandicarboxylic acid by in situ oxidation of 5-hydroxymethylfurfural starting from fructose. Topics in catalysis, vol.13, no.3, 237-242.

  5. 10.1002/1615-4169(20010129)343:1<102::AID-ADSC102>3.0.CO;2-Q 

  6. Dijkman, Willem P., Fraaije, Marco W.. Discovery and Characterization of a 5-Hydroxymethylfurfural Oxidase from Methylovorus sp. Strain MP688. Applied and environmental microbiology, vol.80, no.3, 1082-1090.

  7. Serrano, Ana, Calviño, Eva, Carro, Juan, Sánchez-Ruiz, María I., Cañada, F. Javier, Martínez, Angel T.. Complete oxidation of hydroxymethylfurfural to furandicarboxylic acid by aryl-alcohol oxidase. Biotechnology for biofuels, vol.12, no.1, 217-.

  8. Carro, Juan, Ferreira, Patricia, Rodríguez, Leonor, Prieto, Alicia, Serrano, Ana, Balcells, Beatriz, Ardá, Ana, Jiménez‐Barbero, Jesús, Gutiérrez, Ana, Ullrich, René, Hofrichter, Martin, Martínez, Angel T.. 5‐hydroxymethylfurfural conversion by fungal aryl‐alcohol oxidase and unspecific peroxygenase. The FEBS journal, vol.282, no.16, 3218-3229.

  9. van Deurzen, M. P.J., van Rantwijk, F., Sheldon, R. A.. Chloroperoxidase-Catalyzed Oxidation of 5-Hydroxymethylfurfural. Journal of carbohydrate chemistry, vol.16, no.3, 299-309.

  10. Kumar, Hemant, Fraaije, Marco. Conversion of Furans by Baeyer-Villiger Monooxygenases. Catalysts, vol.7, no.6, 179-.

  11. McKenna, Shane M., Leimkühler, Silke, Herter, Susanne, Turner, Nicholas J., Carnell, Andrew J.. Enzyme cascade reactions: synthesis of furandicarboxylic acid (FDCA) and carboxylic acids using oxidases in tandem. Green chemistry : an international journal and green chemistry resource : GC, vol.17, no.6, 3271-3275.

  12. Koopman, F., Wierckx, N., de Winde, J.H., Ruijssenaars, H.J.. Efficient whole-cell biotransformation of 5-(hydroxymethyl)furfural into FDCA, 2,5-furandicarboxylic acid. Bioresource technology : biomass, bioenergy, biowastes, conversion technologies, biotransformations, production technologies, vol.101, no.16, 6291-6296.

  13. Koopman, Frank, Wierckx, Nick, de Winde, Johannes H., Ruijssenaars, Harald J.. Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14. Proceedings of the National Academy of Sciences of the United States of America, vol.107, no.11, 4919-4924.

  14. Yin, Jia, Zheng, Wentao, Gao, Yunsheng, Jiang, Chanjuan, Shi, Hongbo, Diao, Xiaotong, Li, Shanshan, Chen, Hanna, Wang, Hailong, Li, Ruijuan, Li, Aiying, Xia, Liqiu, Yin, Yulong, Stewart, A. Francis, Zhang, Youming, Fu, Jun. Single-Stranded DNA-Binding Protein and Exogenous RecBCD Inhibitors Enhance Phage-Derived Homologous Recombination in Pseudomonas. iscience, vol.14, 1-14.

  15. Wierckx, Nick J. P., Ballerstedt, Hendrik, de Bont, Jan A. M., Wery, Jan. Engineering of Solvent-TolerantPseudomonas putidaS12 for Bioproduction of Phenol from Glucose. Applied and environmental microbiology, vol.71, no.12, 8221-8227.

  16. Meijnen, Jean-Paul, Verhoef, Suzanne, Briedjlal, Ashwin A., de Winde, Johannes H., Ruijssenaars, Harald J.. Improved p -hydroxybenzoate production by engineered Pseudomonas putida S12 by using a mixed-substrate feeding strategy. Applied microbiology and biotechnology, vol.90, no.3, 885-893.

  17. Verhoef, Suzanne, Wierckx, Nick, Westerhof, R. G. Maaike, de Winde, Johannes H., Ruijssenaars, Harald J.. Bioproduction of p -Hydroxystyrene from Glucose by the Solvent-Tolerant Bacterium Pseudomonas putida S12 in a Two-Phase Water-Decanol Fermentation. Applied and environmental microbiology, vol.75, no.4, 931-936.

  18. Foti, M., Medici, R., Ruijssenaars, H.J.. Biological production of monoethanolamine by engineered Pseudomonas putida S12. Journal of biotechnology, vol.167, no.3, 344-349.

  19. Wierckx, N. J. P., Schuurman, T. D. E., Kuijper, S. M., and Ruijssenaars, H. J. (2018). Genetically modified cell and process for use of said cell. US patent WO2012064195A3. 

  20. Li, Lei, Liu, Xiaocao, Wei, Keke, Lu, Yinhua, Jiang, Weihong. Synthetic biology approaches for chromosomal integration of genes and pathways in industrial microbial systems. Biotechnology advances, vol.37, no.5, 730-745.

  21. Tao, Fei, Tang, Hongzhi, Gai, Zhonghui, Su, Fei, Wang, Xiaoyu, He, Xiaofei, Xu, Ping. Genome Sequence of Pseudomonas putida Idaho, a Unique Organic-Solvent-Tolerant Bacterium. Journal of bacteriology, vol.193, no.24, 7011-7012.

  22. Hsu, Mu-Nung, Chang, Yu-Han, Truong, Vu Anh, Lai, Po-Liang, Nguyen, Thị Kieu Nuong, Hu, Yu-Chen. CRISPR technologies for stem cell engineering and regenerative medicine. Biotechnology advances, vol.37, no.8, 107447-.

  23. Li, Hung, Shen, Claire R., Huang, Chun-Hung, Sung, Li-Yu, Wu, Meng-Ying, Hu, Yu-Chen. CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production. Metabolic engineering, vol.38, 293-302.

  24. Qin, Qin, Ling, Chen, Zhao, Yiqing, Yang, Tian, Yin, Jin, Guo, Yingying, Chen, Guo Qiang. CRISPR/Cas9 editing genome of extremophile Halomonas spp.. Metabolic engineering, vol.47, 219-229.

  25. Jiang, Wenyan, Bikard, David, Cox, David, Zhang, Feng, Marraffini, Luciano A.. CRISPR-assisted editing of bacterial genomes. Nature biotechnology, vol.31, no.3, 233-239.

  26. Pyne, Michael E., Moo-Young, Murray, Chung, Duane A., Chou, C. Perry. Coupling the CRISPR/Cas9 System with Lambda Red Recombineering Enables Simplified Chromosomal Gene Replacement in Escherichia coli. Applied and environmental microbiology, vol.81, no.15, 5103-5114.

  27. Yu, Daiguan, Ellis, Hilary M., Lee, E-Chiang, Jenkins, Nancy A., Copeland, Neal G., Court, Donald L.. An efficient recombination system for chromosome engineering in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, vol.97, no.11, 5978-5983.

  28. Li, Zheng-Jun, Hong, Peng-Hui, Da, Yang-Yang, Li, Liang-Kang, Stephanopoulos, Gregory. Metabolic engineering of Escherichia coli for the production of L-malate from xylose. Metabolic engineering, vol.48, 25-32.

  29. Liu, Rongming, Liang, Liya, Choudhury, Alaksh, Bassalo, Marcelo C., Garst, Andrew D., Tarasava, Katia, Gill, Ryan T.. Iterative genome editing of Escherichia coli for 3-hydroxypropionic acid production. Metabolic engineering, vol.47, 303-313.

  30. Wu, Meng-Ying, Sung, Li-Yu, Li, Hung, Huang, Chun-Hung, Hu, Yu-Chen. Combining CRISPR and CRISPRi Systems for Metabolic Engineering of E.?coli and 1,4-BDO Biosynthesis. ACS Synthetic biology, vol.6, no.12, 2350-2361.

  31. Ran, F. Ann, Cong, Le, Yan, Winston X., Scott, David A., Gootenberg, Jonathan S., Kriz, Andrea J., Zetsche, Bernd, Shalem, Ophir, Wu, Xuebing, Makarova, Kira S., Koonin, Eugene, Sharp, Phillip A., Zhang, Feng. In vivo genome editing using Staphylococcus aureus Cas9. Nature, vol.520, no.7546, 186-191.

  32. Elmore, Joshua R., Furches, Anna, Wolff, Gara N., Gorday, Kent, Guss, Adam M.. Development of a high efficiency integration system and promoter library for rapid modification of Pseudomonas putida KT2440 . Metabolic engineering communications, vol.5, 1-8.

  33. Sung, Li‐Yu, Wu, Meng‐Ying, Lin, Mei‐Wei, Hsu, Mu‐Nung, Truong, Vu Anh, Shen, Chih‐Che, Tu, Yi, Hwang, Kuen‐Yuan, Tu, An‐Pang, Chang, Yu‐Han, Hu, Yu‐Chen. Combining orthogonal CRISPR and CRISPRi systems for genome engineering and metabolic pathway modulation in Escherichia coli. Biotechnology and bioengineering, vol.116, no.5, 1066-1079.

  34. Fernández, Matilde, Conde, Susana, de la Torre, Jesús, Molina-Santiago, Carlos, Ramos, Juan-Luis, Duque, Estrella. Mechanisms of Resistance to Chloramphenicol in Pseudomonas putida KT2440. Antimicrobial agents and chemotherapy, vol.56, no.2, 1001-1009.

  35. Datsenko, Kirill A., Wanner, Barry L.. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America, vol.97, no.12, 6640-6645.

  36. Xu, Youqiang, Tao, Fei, Ma, Cuiqing, Xu, Ping. New Constitutive Vectors: Useful Genetic Engineering Tools for Biocatalysis. Applied and environmental microbiology, vol.79, no.8, 2836-2840.

  37. Breuert, Sebastian, Allers, Thorsten, Spohn, Gabi, Soppa, Jörg. Regulated Polyploidy in Halophilic Archaea. PloS one, vol.1, no.1, e92-.

  38. Pecoraro, Vito, Zerulla, Karolin, Lange, Christian, Soppa, Jörg. Quantification of Ploidy in Proteobacteria Revealed the Existence of Monoploid, (Mero-)Oligoploid and Polyploid Species. PloS one, vol.6, no.1, e16392-.

  39. Graf, Nadja, Altenbuchner, Josef. Development of a Method for Markerless Gene Deletion in Pseudomonas putida. Applied and environmental microbiology, vol.77, no.15, 5549-5552.

  40. Dijkman, Willem P., Groothuis, Daphne E., Fraaije, Marco W.. Enzyme‐Catalyzed Oxidation of 5‐Hydroxymethylfurfural to Furan‐2,5‐dicarboxylic Acid. Angewandte Chemie. international edition, vol.53, no.25, 6515-6518.

  41. Kim, Jisun, Park, Woojun. Oxidative stress response in Pseudomonas putida. Applied microbiology and biotechnology, vol.98, no.16, 6933-6946.

  42. Alyea, Hubert N.. MnO2 as a catalyst for H2O2 decomposition. Dem. 646. Journal of chemical education, vol.46, no.7, A496-.

  43. Microorganisms in Biorefineries Wierckx N. 207 2015 10.1007/978-3-662-45209-7_8 

  44. Goh, Shan, Good, Liam. Plasmid selection in Escherichia coli using an endogenous essential gene marker. BMC biotechnology, vol.8, 61-61.

  45. Li, Y., Lin, Z., Huang, C., Zhang, Y., Wang, Z., Tang, Y.j., Chen, T., Zhao, X.. Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing. Metabolic engineering, vol.31, 13-21.

  46. Nikel, Pablo I., de Lorenzo, Víctor. Pseudomonas putida as a functional chassis for industrial biocatalysis: From native biochemistry to trans-metabolism. Metabolic engineering, vol.50, 142-155.

  47. Martínez-García, Esteban, de Lorenzo, Víctor. Pseudomonas putida in the quest of programmable chemistry. Current opinion in biotechnology, vol.59, 111-121.

  48. Cook, Taylor B, Rand, Jacqueline M, Nurani, Wasti, Courtney, Dylan K, Liu, Sophia A, Pfleger, Brian F. Genetic tools for reliable gene expression and recombineering in Pseudomonas putida. Journal of industrial microbiology & biotechnology, vol.45, no.7, 517-527.

  49. Martínez‐García, Esteban, de Lorenzo, Víctor. Engineering multiple genomic deletions in Gram‐negative bacteria: analysis of the multi‐resistant antibiotic profile of Pseudomonas putida KT2440. Environmental microbiology, vol.13, no.10, 2702-2716.

  50. Domröse, Andreas, Weihmann, Robin, Thies, Stephan, Jaeger, Karl-Erich, Drepper, Thomas, Loeschcke, Anita. Rapid generation of recombinant Pseudomonas putida secondary metabolite producers using yTREX. Synthetic and systems biotechnology, vol.2, no.4, 310-319.

  51. Luo, Xi, Yang, Yunwen, Ling, Wen, Zhuang, Hao, Li, Qin, Shang, Guangdong, Calendar, Richard. Pseudomonas putidaKT2440 markerless gene deletion using a combination of λ Red recombineering and Cre/loxPsite-specific recombination. FEMS microbiology letters, vol.363, no.4, fnw014-.

  52. Choi, Kyeong Rok, Cho, Jae Sung, Cho, In Jin, Park, Dahyeon, Lee, Sang Yup. Markerless gene knockout and integration to express heterologous biosynthetic gene clusters in Pseudomonas putida. Metabolic engineering, vol.47, 463-474.

  53. Aparicio, Tomás, de Lorenzo, Víctor, Martínez‐García, Esteban. CRISPR/Cas9‐Based Counterselection Boosts Recombineering Efficiency in Pseudomonas putida. Biotechnology journal, vol.13, no.5, 1700161-.

  54. Wirth, Nicolas T., Kozaeva, Ekaterina, Nikel, Pablo I.. Accelerated genome engineering of Pseudomonas putida by I‐SceI―mediated recombination and CRISPR‐Cas9 counterselection. Microbial biotechnology, vol.13, no.1, 233-249.

  55. Chen, Weizhong, Zhang, Ya, Zhang, Yifei, Pi, Yishuang, Gu, Tongnian, Song, Liqiang, Wang, Yu, Ji, Quanjiang. CRISPR/Cas9-based Genome Editing in Pseudomonas aeruginosa and Cytidine Deaminase-Mediated Base Editing in Pseudomonas Species. iscience, vol.6, 222-231.

  56. Sun, Jun, Wang, Qingzhuo, Jiang, Yu, Wen, Zhiqiang, Yang, Lirong, Wu, Jianping, Yang, Sheng. Genome editing and transcriptional repression in Pseudomonas putida KT2440 via the type II CRISPR system. Microbial cell factories, vol.17, 41-.

  57. Rühl, Jana, Schmid, Andreas, Blank, Lars Mathias. Selected Pseudomonas putida Strains Able To Grow in the Presence of High Butanol Concentrations. Applied and environmental microbiology, vol.75, no.13, 4653-4656.

  58. Ballerstedt, Hendrik, Volkers, Rita J. M., Mars, Astrid E., Hallsworth, John E., Santos, Vitor A. Martins dos, Puchalka, Jaçek, van Duuren, Joost, Eggink, Gerrit, Timmis, Ken N., de Bont, Jan A. M., Wery, Jan. Genomotyping of Pseudomonas putida strains using P. putida KT2440-based high-density DNA microarrays: implications for transcriptomics studies. Applied microbiology and biotechnology, vol.75, no.5, 1133-1142.

  59. Poblete-Castro, Ignacio, Binger, Danielle, Oehlert, Rene, Rohde, Manfred. Comparison of mcl-Poly(3-hydroxyalkanoates) synthesis by different Pseudomonas putida strains from crude glycerol: citrate accumulates at high titer under PHA-producing conditions. BMC biotechnology, vol.14, 962-.

  60. Gong, Ting, Liu, Ruihua, Che, You, Xu, Xiaoqing, Zhao, Fengjie, Yu, Huilei, Song, Cunjiang, Liu, Yanping, Yang, Chao. Engineering Pseudomonas putida KT 2440 for simultaneous degradation of carbofuran and chlorpyrifos. Microbial biotechnology, vol.9, no.6, 792-800.

  61. Chung, Mu‐En, Yeh, I‐Hsin, Sung, Li‐Yu, Wu, Meng‐Ying, Chao, Yun‐Peng, Ng, I‐Son, Hu, Yu‐Chen. Enhanced integration of large DNA into E. coli chromosome by CRISPR/Cas9. Biotechnology and bioengineering, vol.114, no.1, 172-183.

  62. Hossain, Gazi Sakir, Yuan, Haibo, Li, Jianghua, Shin, Hyun-dong, Wang, Miao, Du, Guocheng, Chen, Jian, Liu, Long. Metabolic Engineering of Raoultella ornithinolytica BF60 for Production of 2,5-Furandicarboxylic Acid from 5-Hydroxymethylfurfural. Applied and environmental microbiology, vol.83, no.1, e02312-16-e02312-16.

  63. Yuan, Haibo, Liu, Yanfeng, Li, Jianghua, Shin, Hyun‐dong, Du, Guocheng, Shi, Zhongping, Chen, Jian, Liu, Long. Combinatorial synthetic pathway fine‐tuning and comparative transcriptomics for metabolic engineering of Raoultella ornithinolytica BF60 to efficiently synthesize 2,5‐furandicarboxylic acid. Biotechnology and bioengineering, vol.115, no.9, 2148-2155.

  64. Yuan, Haibo, Li, Jianghua, Shin, Hyun-dong, Du, Guocheng, Chen, Jian, Shi, Zhongping, Liu, Long. Improved production of 2,5-furandicarboxylic acid by overexpression of 5-hydroxymethylfurfural oxidase and 5-hydroxymethylfurfural/furfural oxidoreductase in Raoultella ornithinolytica BF60. Bioresource technology : biomass, bioenergy, biowastes, conversion technologies, biotransformations, production technologies, vol.247, 1184-1188.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로