$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Halloysite/Keratin Nanocomposite for Human Hair Photoprotection Coating 원문보기

ACS applied materials & interfaces, v.12 no.21, 2020년, pp.24348 - 24362  

Cavallaro, Giuseppe (Dipartimento di Fisica e Chimica , Università) ,  Milioto, Stefana (degli Studi di Palermo , Viale delle Scienze, pad. 17 , Palermo 90128 , Italy) ,  Konnova, Svetlana (Institute of Fundamental Medicine and Biology , Kazan Federal University , Kreml uramı 18 , Kazan , Republic of Tatarstan 420008 , Russian Federation) ,  Fakhrullina, Gölnur (Institute of Fundamental Medicine and Biology , Kazan Federal University , Kreml uramı 18 , Kazan , Republic of Tatarstan 420008 , Russian Federation) ,  Akhatova, Farida (Institute of Fundamental Medicine and Biology , Kazan Federal University , Kreml uramı 18 , Kazan , Republic of Tatarstan 420008 , Russian Federation) ,  Lazzara, Giuseppe (Dipartimento di Fisica e Chimica , Università) ,  Fakhrullin, Rawil (degli Studi di Palermo , Viale delle Scienze, pad. 17 , Palermo 90128 , Italy) ,  Lvov, Yuri

Abstract AI-Helper 아이콘AI-Helper

We propose a novel keratin treatment of human hair by its aqueous mixtures with natural halloysite clay nanotubes. The loaded clay nanotubes together with free keratin produce micrometer-thick protective coating on hair. First, colloidal and structural properties of halloysite/keratin dispersions an...

주제어

참고문헌 (70)

  1. Santos A. C. ; Morais F. ; Simões A. ; Pereira I. ; Sequeira J. A. D. ; Pereira-Silva M. ; Veiga F. ; Ribeiro A. Nanotechnology for the Development of New Cosmetic Formulations . Expert Opin. Drug Delivery 2019 , 16 , 313 – 330 . 10.1080/17425247.2019.1585426 . 

  2. Kaul S. ; Gulati N. ; Verma D. ; Mukherjee S. ; Nagaich U. Role of Nanotechnology in Cosmeceuticals: A Review of Recent Advances . J. Pharm. 2018 , 2018 , 1 – 19 . 10.1155/2018/3420204 . 

  3. Hougeir F. G. ; Kircik L. A Review of Delivery Systems in Cosmetics . Dermatol. Ther. 2012 , 25 , 234 – 237 . 10.1111/j.1529-8019.2012.01501.x . 22913440 

  4. Costa R. ; Santos L. Delivery Systems for Cosmetics - From Manufacturing to the Skin of Natural Antioxidants . Powder Technol. 2017 , 322 , 402 – 416 . 10.1016/j.powtec.2017.07.086 . 

  5. Jimtaisong A. ; Saewan N. Utilization of Carboxymethyl Chitosan in Cosmetics . Int. J. Cosmet. Sci. 2014 , 36 , 12 – 21 . 10.1111/ics.12102 . 24152381 

  6. Gutha Y. ; Pathak J. L. ; Zhang W. ; Zhang Y. ; Jiao X. Antibacterial and Wound Healing Properties of Chitosan/Poly(Vinyl Alcohol)/Zinc Oxide Beads (CS/PVA/ZnO) . Int. J. Biol. Macromol. 2017 , 103 , 234 – 241 . 10.1016/j.ijbiomac.2017.05.020 . 28499948 

  7. Fortuni B. ; Inose T. ; Ricci M. ; Fujita Y. ; Van Zundert I. ; Masuhara A. ; Fron E. ; Mizuno H. ; Latterini L. ; Rocha S. ; Uji-i H. Polymeric Engineering of Nanoparticles for Highly Efficient Multifunctional Drug Delivery Systems . Sci. Rep. 2019 , 9 , 2666 10.1038/s41598-019-39107-3 . 30804375 

  8. Lim H. J. ; Cho E. C. ; Lee J. A. ; Kim J. A Novel Approach for the Use of Hyaluronic Acid-Based Hydrogel Nanoparticles as Effective Carriers for Transdermal Delivery Systems . Colloids Surf., A 2012 , 402 , 80 – 87 . 10.1016/j.colsurfa.2012.03.023 . 

  9. Gupta R. ; Rai B. Effect of Size and Surface Charge of Gold Nanoparticles on Their Skin Permeability: A Molecular Dynamics Study . Sci. Rep. 2017 , 7 , 45292 10.1038/srep45292 . 28349970 

  10. Ullah Khan S. ; Saleh T. A. ; Wahab A. ; Ullah Khan M. H. ; Khan D. ; Ullah Khan W. ; Rahim A. ; Kamal S. ; Ullah Khan F. ; Fahad S. Nanosilver: New Ageless and Versatile Biomedical Therapeutic Scaffold . Int. J. Nanomed. 2018 , 13 , 733 – 762 . 10.2147/IJN.S153167 . 

  11. Wollina U. ; Pabst F. ; Kuss H. ; Tilp M. ; Runge J. Monoclonal Anti-CD20 Antibody Therapy in Cicatrical Pemphigoid with Oral and Hypopharyngeal Involvement and Related Conditions . J. Clin. Aesthetic Dermatol. 2013 , 6 , 45 – 48 . 

  12. Shmidt E. ; Levitt J. Dermatologic Infestations . Int. J. Dermatol. 2012 , 51 , 131 – 141 . 10.1111/j.1365-4632.2011.05191.x . 22250620 

  13. Panchal A. ; Fakhrullina G. ; Fakhrullin R. ; Lvov Y. Self-Assembly of Clay Nanotubes on Hair Surface for Medical and Cosmetic Formulations . Nanoscale 2018 , 10 , 18205 – 18216 . 10.1039/C8NR05949G . 30211430 

  14. Lvov Y. ; Panchal A. ; Fakhrullin R. Coating of Clay Micro-Tubes on Surfaces of Hair and Natural Fibers . U.S. Patent 10,166,175 B1 , Jan 1, 2019 . 

  15. Roque L. V. ; Dias I. S. ; Cruz N. ; Rebelo A. ; Roberto A. ; Rijo P. ; Reis C. P. Design of Finasteride-Loaded Nanoparticles for Potential Treatment of Alopecia . Skin Pharmacol. Physiol. 2017 , 30 , 197 – 204 . 10.1159/000475473 . 28689207 

  16. Santos A. C. ; Panchal A. ; Rahman N. ; Pereira-Silva M. ; Pereira I. ; Veiga F. ; Lvov Y. Evolution of Hair Treatment and Care: Prospects of Nanotube-Based Formulations . Nanomaterials 2019 , 9 , 903 10.3390/nano9060903 . 

  17. Makaremi M. ; Pasbakhsh P. ; Cavallaro G. ; Lazzara G. ; Aw Y. K. ; Lee S. M. ; Milioto S. Effect of Morphology and Size of Halloysite Nanotubes on Functional Pectin Bionanocomposites for Food Packaging Applications . ACS Appl. Mater. Interfaces 2017 , 9 , 17476 – 17488 . 10.1021/acsami.7b04297 . 28481104 

  18. Cavallaro G. ; Lazzara G. ; Milioto S. ; Parisi F. ; Evtugyn V. ; Rozhina E. ; Fakhrullin R. Nanohydrogel Formation within the Halloysite Lumen for Triggered and Sustained Release . ACS Appl. Mater. Interfaces 2018 , 10 , 8265 – 8273 . 10.1021/acsami.7b19361 . 29430922 

  19. Pierchala M. K. ; Makaremi M. ; Tan H. L. ; Pushpamalar J. ; Muniyandy S. ; Solouk A. ; Lee S. M. ; Pasbakhsh P. Nanotubes in Nanofibers: Antibacterial Multilayered Polylactic Acid/Halloysite/Gentamicin Membranes for Bone Regeneration Application . Appl. Clay Sci. 2018 , 160 , 95 – 105 . 10.1016/j.clay.2017.12.016 . 

  20. Zhao X. ; Wan Q. ; Fu X. ; Meng X. ; Ou X. ; Zhong R. ; Zhou Q. ; Liu M. Toxicity Evaluation of One-Dimensional Nanoparticles Using Caenorhabditis Elegans: A Comparative Study of Halloysite Nanotubes and Chitin Nanocrystals . ACS Sustainable Chem. Eng. 2019 , 7 , 18965 – 18975 . 10.1021/acssuschemeng.9b04365 . 

  21. Long Z. ; Wu Y.-P. ; Gao H.-Y. ; Zhang J. ; Ou X. ; He R.-R. ; Liu M. In Vitro and in Vivo Toxicity Evaluation of Halloysite Nanotubes . J. Mater. Chem. B 2018 , 6 , 7204 – 7216 . 10.1039/C8TB01382A . 32254633 

  22. Wang X. ; Gong J. ; Rong R. ; Gui Z. ; Hu T. ; Xu X. Halloysite Nanotubes-Induced Al Accumulation and Fibrotic Response in Lung of Mice after 30-Day Repeated Oral Administration . J. Agric. Food Chem. 2018 , 66 , 2925 – 2933 . 10.1021/acs.jafc.7b04615 . 29470912 

  23. Lvov Y. M. ; DeVilliers M. M. ; Fakhrullin R. F. The Application of Halloysite Tubule Nanoclay in Drug Delivery . Expert Opin. Drug Delivery 2016 , 13 , 977 – 986 . 10.1517/17425247.2016.1169271 . 

  24. Lisuzzo L. ; Cavallaro G. ; Pasbakhsh P. ; Milioto S. ; Lazzara G. Why Does Vacuum Drive to the Loading of Halloysite Nanotubes? The Key Role of Water Confinement . J. Colloid Interface Sci. 2019 , 547 , 361 – 369 . 10.1016/j.jcis.2019.04.012 . 30974251 

  25. Cheng C. ; Gao Y. ; Song W. ; Zhao Q. ; Zhang H. ; Zhang H. Halloysite Nanotube-Based H2O2-Responsive Drug Delivery System with a Turn on Effect on Fluorescence for Real-Time Monitoring . Chem. Eng. Sci 2020 , 380 , 122474 10.1016/j.cej.2019.122474 . 

  26. Micó-Vicent B. ; Martínez-Verdú F. M. ; Novikov A. ; Stavitskaya A. ; Vinokurov V. ; Rozhina E. ; Fakhrullin R. ; Yendluri R. ; Lvov Y. Stabilized Dye-Pigment Formulations with Platy and Tubular Nanoclays . Adv. Funct. Mater. 2018 , 28 , 1703553 10.1002/adfm.201703553 . 

  27. Gorrasi G. Dispersion of Halloysite Loaded with Natural Antimicrobials into Pectins: Characterization and Controlled Release Analysis . Carbohydr. Polym. 2015 , 127 , 47 – 53 . 10.1016/j.carbpol.2015.03.050 . 25965455 

  28. Bugatti V. ; Sorrentino A. ; Gorrasi G. Encapsulation of Lysozyme into Halloysite Nanotubes and Dispersion in PLA: Structural and Physical Properties and Controlled Release Analysis . Eur. Polym. J. 2017 , 93 , 495 – 506 . 10.1016/j.eurpolymj.2017.06.024 . 

  29. Kuang W. ; Yang Z. ; Tang Z. ; Guo B. Wrapping of Polyrhodanine onto Tubular Clay and Its Prominent Effects on the Reinforcement of the Clay for Rubber . Composites, Part A 2016 , 84 , 344 – 353 . 10.1016/j.compositesa.2016.02.015 . 

  30. Zhou X. ; Zhang Q. ; Wang R. ; Guo B. ; Lvov Y. ; Hu G.-H. ; Zhang L. Preparation and Performance of Bio-Based Carboxylic Elastomer/Halloysite Nanotubes Nanocomposites with Strong Interfacial Interaction . Composites, Part A 2017 , 102 , 253 – 262 . 10.1016/j.compositesa.2017.08.013 . 

  31. Liu Y. ; Guan H. ; Zhang J. ; Zhao Y. ; Yang J.-H. ; Zhang B. Polydopamine-Coated Halloysite Nanotubes Supported AgPd Nanoalloy: An Efficient Catalyst for Hydrolysis of Ammonia Borane . Int. J. Hydrogen Energy 2018 , 43 , 2754 – 2762 . 10.1016/j.ijhydene.2017.12.105 . 

  32. Venkataraman P. ; Tang J. ; Frenkel E. ; McPherson G. L. ; He J. ; Raghavan S. R. ; Kolesnichenko V. ; Bose A. ; John V. T. Attachment of a Hydrophobically Modified Biopolymer at the Oil-Water Interface in the Treatment of Oil Spills . ACS Appl. Mater. Interfaces 2013 , 5 , 3572 – 3580 . 10.1021/am303000v . 23527784 

  33. Owoseni O. ; Nyankson E. ; Zhang Y. ; Adams D. J. ; He J. ; Spinu L. ; McPherson G. L. ; Bose A. ; Gupta R. B. ; John V. T. Interfacial Adsorption and Surfactant Release Characteristics of Magnetically Functionalized Halloysite Nanotubes for Responsive Emulsions . J. Colloid Interface Sci. 2016 , 463 , 288 – 298 . 10.1016/j.jcis.2015.10.064 . 26555959 

  34. Zhao X. ; Luo Y. ; Tan P. ; Liu M. ; Zhou C. Hydrophobically Modified Chitin/Halloysite Nanotubes Composite Sponges for High Efficiency Oil-Water Separation . Int. J. Biol. Macromol. 2019 , 132 , 406 – 415 . 10.1016/j.ijbiomac.2019.03.219 . 30936014 

  35. Sadjadi S. ; Heravi M. M. ; Kazemi S. S. Ionic Liquid Decorated Chitosan Hybridized with Clay: A Novel Support for Immobilizing Pd Nanoparticles . Carbohydr. Polym. 2018 , 200 , 183 – 190 . 10.1016/j.carbpol.2018.07.093 . 30177156 

  36. Feng Y. ; Zhou X. ; Yang J.-h. ; Gao X. ; Yin L. ; Zhao Y. ; Zhang B. Encapsulation of Ammonia Borane in Pd/Halloysite Nanotubes for Efficient Thermal Dehydrogenation . ACS Sustainable Chem. Eng. 2020 , 8 , 2122 – 2129 . 10.1021/acssuschemeng.9b04480 . 

  37. Liu Y. ; Zhang J. ; Guan H. ; Zhao Y. ; Yang J.-H. ; Zhang B. Preparation of Bimetallic Cu-Co Nanocatalysts on Poly (Diallyldimethylammonium Chloride) Functionalized Halloysite Nanotubes for Hydrolytic Dehydrogenation of Ammonia Borane . Appl. Surf. Sci. 2018 , 427 , 106 – 113 . 10.1016/j.apsusc.2017.08.171 . 

  38. von Klitzing R. ; Stehl D. ; Pogrzeba T. ; Schomäcker R. ; Minullina R. ; Panchal A. ; Konnova S. ; Fakhrullin R. ; Koetz J. ; Möhwald H. ; Lvov Y. Halloysites Stabilized Emulsions for Hydroformylation of Long Chain Olefins . Adv. Mater. Interfaces 2016 , 4 , 1600435 10.1002/admi.201600435 . 

  39. Pasbakhsh P. ; Churchman G. J. ; Keeling J. L. Characterisation of Properties of Various Halloysites Relevant to Their Use as Nanotubes and Microfibre Fillers . Appl. Clay Sci. 2013 , 74 , 47 – 57 . 10.1016/j.clay.2012.06.014 . 

  40. Cavallaro G. ; Chiappisi L. ; Pasbakhsh P. ; Gradzielski M. ; Lazzara G. A Structural Comparison of Halloysite Nanotubes of Different Origin by Small-Angle Neutron Scattering (SANS) and Electric Birefringence . Appl. Clay Sci. 2018 , 160 , 71 – 80 . 10.1016/j.clay.2017.12.044 . 

  41. Lazzara G. ; Cavallaro G. ; Panchal A. ; Fakhrullin R. ; Stavitskaya A. ; Vinokurov V. ; Lvov Y. An Assembly of Organic-Inorganic Composites Using Halloysite Clay Nanotubes . Curr. Opin. Colloid Interface Sci. 2018 , 35 , 42 – 50 . 10.1016/j.cocis.2018.01.002 . 

  42. Liu F. ; Bai L. ; Zhang H. ; Song H. ; Hu L. ; Wu Y. ; Ba X. Smart H2O2-Responsive Drug Delivery System Made by Halloysite Nanotubes and Carbohydrate Polymers . ACS Appl. Mater. Interfaces 2017 , 9 , 31626 – 31633 . 10.1021/acsami.7b10867 . 28862828 

  43. Popescu C. ; Höcker H. Hair-the most sophisticated biological composite material . Chem. Soc. Rev. 2007 , 36 , 1282 – 1291 . 10.1039/B604537P . 17619688 

  44. Ko J. ; Nguyen L. T. H. ; Surendran A. ; Tan B. Y. ; Ng K. W. ; Leong W. L. Human Hair Keratin for Biocompatible Flexible and Transient Electronic Devices . ACS Appl. Mater. Interfaces 2017 , 9 , 43004 – 43012 . 10.1021/acsami.7b16330 . 29160686 

  45. Wang S. ; Wang Z. ; Foo S. E. M. ; Tan N. S. ; Yuan Y. ; Lin W. ; Zhang Z. ; Ng K. W. Culturing Fibroblasts in 3D Human Hair Keratin Hydrogels . ACS Appl. Mater. Interfaces 2015 , 7 , 5187 – 5198 . 10.1021/acsami.5b00854 . 25690726 

  46. Gao F. ; Li W. ; Deng J. ; Kan J. ; Guo T. ; Wang B. ; Hao S. Recombinant Human Hair Keratin Nanoparticles Accelerate Dermal Wound Healing . ACS Appl. Mater. Interfaces 2019 , 11 , 18681 – 18690 . 10.1021/acsami.9b01725 . 31038908 

  47. Ghaffari R. ; Eslahi N. ; Tamjid E. ; Simchi A. Dual-Sensitive Hydrogel Nanoparticles Based on Conjugated Thermoresponsive Copolymers and Protein Filaments for Triggerable Drug Delivery . ACS Appl. Mater. Interfaces 2018 , 10 , 19336 – 19346 . 10.1021/acsami.8b01154 . 29771485 

  48. Gavazzoni Dias M. F. Hair Cosmetics: An Overview . Int. J. Trichol. 2015 , 7 , 2 – 15 . 10.4103/0974-7753.153450 . 

  49. Günay K. A. ; Berthier D. L. ; Jerri H. A. ; Benczédi D. ; Klok H.-A. ; Herrmann A. Selective Peptide-Mediated Enhanced Deposition of Polymer Fragrance Delivery Systems on Human Hair . ACS Appl. Mater. Interfaces 2017 , 9 , 24238 – 24249 . 10.1021/acsami.7b06569 . 28650615 

  50. Villa A. L. V. ; Aragão M. R. S. ; dos Santos E. P. ; Mazotto A. M. ; Zingali R. B. ; de Souza E. P. ; Vermelho A. B. Feather Keratin Hydrolysates Obtained from Microbial Keratinases: Effect on Hair Fiber . BMC Biotechnol. 2013 , 13 , 15 10.1186/1472-6750-13-15 . 23414102 

  51. Cruz C. F. ; Martins M. ; Egipto J. ; Osório H. ; Ribeiro A. ; Cavaco-Paulo A. Changing the Shape of Hair with Keratin Peptides . RSC Adv. 2017 , 7 , 51581 – 51592 . 10.1039/C7RA10461H . 

  52. Tully J. ; Yendluri R. ; Lvov Y. Halloysite Clay Nanotubes for Enzyme Immobilization . Biomacromolecules 2016 , 17 , 615 – 621 . 10.1021/acs.biomac.5b01542 . 26699154 

  53. Chao C. ; Guan H. ; Zhang J. ; Liu Y. ; Zhao Y. ; Zhang B. Immobilization of Laccase onto Porous Polyvinyl Alcohol/Halloysite Hybrid Beads for Dye Removal . Water Sci. Technol. 2017 , 77 , 809 – 818 . 10.2166/wst.2017.594 . 

  54. Massaro M. ; Cavallaro G. ; Colletti C. G. ; D’Azzo G. ; Guernelli S. ; Lazzara G. ; Pieraccini S. ; Riela S. Halloysite Nanotubes for Efficient Loading, Stabilization and Controlled Release of Insulin . J. Colloid Interface Sci. 2018 , 524 , 156 – 164 . 10.1016/j.jcis.2018.04.025 . 29649624 

  55. Siva Gangi Reddy N. ; Madhusudana Rao K. ; Park S. Y. ; Kim T. ; Chung I. Fabrication of Aminosilanized Halloysite Based Floating Biopolymer Composites for Sustained Gastro Retentive Release of Curcumin . Macromol. Res. 2019 , 27 , 490 – 496 . 10.1007/s13233-019-7062-z . 

  56. Pietraszek A. ; Karewicz A. ; Widnic M. ; Lachowicz D. ; Gajewska M. ; Bernasik A. ; Nowakowska M. Halloysite-alkaline phosphatase system-A potential bioactive component of scaffold for bone tissue engineering . Colloids Surf., B 2019 , 173 , 1 – 8 . 10.1016/j.colsurfb.2018.09.040 . 

  57. Konnova S. A. ; Lvov Y. M. ; Fakhrullin R. F. Nanoshell Assembly for Magnet-Responsive Oil-Degrading Bacteria . Langmuir 2016 , 32 , 12552 – 12558 . 10.1021/acs.langmuir.6b01743 . 27280755 

  58. Akhatova F. ; Danilushkina A. ; Kuku G. ; Saricam M. ; Culha M. ; Fakhrullin R. Simultaneous Intracellular Detection of Plasmonic and Non-Plasmonic Nanoparticles Using Dark-Field Hyperspectral Microscopy . Bull. Chem. Soc. Jpn. 2018 , 91 , 1640 – 1645 . 10.1246/bcsj.20180198 . 

  59. Bertolino V. ; Cavallaro G. ; Lazzara G. ; Milioto S. ; Parisi F. Biopolymer-Targeted Adsorption onto Halloysite Nanotubes in Aqueous Media . Langmuir 2017 , 33 , 3317 – 3323 . 10.1021/acs.langmuir.7b00600 . 28276693 

  60. Derjaguin B. V. ; Landau L. D. Theory of the Stability of Strongly Charged Lyophobic Sols and of the Adhesion of Strongly Charged Particles in Solution of Electrolytes . Acta Physicochim. USSR 1941 , 14 , 633 – 662 . 

  61. Zhao Y. ; Cavallaro G. ; Lvov Y. Orientation of Charged Clay Nanotubes in Evaporating Droplet Meniscus . J. Colloid Interface Sci. 2015 , 440 , 68 – 77 . 10.1016/j.jcis.2014.10.050 . 25460691 

  62. Tarasova E. ; Naumenko E. ; Rozhina E. ; Akhatova F. ; Fakhrullin R. Cytocompatibility and Uptake of Polycations-Modified Halloysite Clay Nanotubes . Appl. Clay Sci. 2019 , 169 , 21 – 30 . 10.1016/j.clay.2018.12.016 . 

  63. Cavallaro G. ; Milioto S. ; Nigamatzyanova L. ; Akhatova F. ; Fakhrullin R. ; Lazzara G. Pickering Emulsion Gels Based on Halloysite Nanotubes and Ionic Biopolymers: Properties and Cleaning Action on Marble Surface . ACS Appl. Nano Mater. 2019 , 2 , 3169 – 3176 . 10.1021/acsanm.9b00487 . 

  64. Wang N. ; Barfoot R. ; Butler M. ; Durkan C. Effect of Surface Treatments on the Nanomechanical Properties of Human Hair . ACS Biomater. Sci. Eng. 2018 , 4 , 3063 – 3071 . 10.1021/acsbiomaterials.8b00687 . 33435026 

  65. Fakhrullina G. ; Akhatova F. ; Kibardina M. ; Fokin D. ; Fakhrullin R. Nanoscale Imaging and Characterization of Caenorhabditis Elegans Epicuticle Using Atomic Force Microscopy . Nanomedicine 2017 , 13 , 483 – 491 . 10.1016/j.nano.2016.10.003 . 27771431 

  66. Akhatova F. ; Fakhrullina G. ; Khakimova E. ; Fakhrullin R. Atomic Force Microscopy for Imaging and Nanomechanical Characterisation of Live Nematode Epicuticle: A Comparative Caenorhabditis Elegans and Turbatrix Aceti Study . Ultramicroscopy 2018 , 194 , 40 – 47 . 10.1016/j.ultramic.2018.07.008 . 30071372 

  67. Bell S. E. J. ; Bourguignon E. S. O. ; Dennis A. Analysis of Luminescent Samples Using Subtracted Shifted Raman Spectroscopy . Analyst 1998 , 123 , 1729 – 1734 . 10.1039/A802802H . 

  68. Kuzuhara A. A Raman spectroscopic investigation of the mechanism of the reduction in hair with thioglycerol and the accompanying disulphide conformational changes . Int. J. Cosmet. Sci. 2018 , 40 , 34 – 43 . 10.1111/ics.12429 . 28922460 

  69. De Vecchi R. ; da Silveira Carvalho Ripper J. ; Roy D. ; Breton L. ; Germano Marciano A. ; Bernardo de Souza P. M. ; de Paula Corrêa M. Using Wearable Devices for Assessing the Impacts of Hair Exposome in Brazil . Sci. Rep. 2019 , 9 , 13357 10.1038/s41598-019-49902-7 . 31527774 

  70. Prishchenko D. A. ; Zenkov E. V. ; Mazurenko V. V. ; Fakhrullin R. F. ; Lvov Y. M. ; Mazurenko V. G. Molecular Dynamics of the Halloysite Nanotubes . Phys. Chem. Chem. Phys. 2018 , 20 , 5841 – 5849 . 10.1039/C7CP06575B . 29412207 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD(Hybrid)

저자가 APC(Article Processing Charge)를 지불한 논문에 한하여 자유로운 이용이 가능한, hybrid 저널에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로