$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Optimization of gas detector placement considering scenario probability and detector reliability in oil refinery installation

Journal of loss prevention in the process industries, v.65, 2020년, pp.104131 -   

Sun, Lin (Department of Safety Science & Engineering, China University of Petroleum (East China)) ,  Chen, Xi (Department of Safety Science & Engineering, China University of Petroleum (East China)) ,  Zhang, Bo (Department of Safety Science & Engineering, China University of Petroleum (East China)) ,  Mu, Chao (Department of Safety Science & Engineering, China University of Petroleum (East China)) ,  Zhou, Cancan (Department of Safety Science & Engineering, China University of Petroleum (East China))

Abstract AI-Helper 아이콘AI-Helper

Abstract Gas detection system is a critical layer of protection in process safety. Leak scenario probability and detector reliability are two key factors in the optimization of gas detector placement. However, they are easily neglected in previous studies, which may lead to an inaccurate evaluation...

주제어

참고문헌 (55)

  1. Digit. Signal Process. Al-Awami 21 195 2011 10.1016/j.dsp.2010.05.001 A new modified particle swarm optimization algorithm for adaptive equalization 

  2. 2001 API Recommended Practice 14C: Recommended Practice for Analysis, Design, Installation, and Testing of Basic Surface Safety Systems for Offshore Production Platforms 

  3. Comput. Oper. Res. Assavapokee 35 2093 2008 10.1016/j.cor.2006.10.013 Scenario relaxation algorithm for finite scenario-based min-max regret and min-max relative regret robust optimization 

  4. Eur. J. Oper. Res. Beasley 65 383 1993 10.1016/0377-2217(93)90118-7 Lagrangean heuristics for location problems 

  5. Benavides-Serrano 753 2014 10.1016/B978-0-444-63433-7.50110-3 Computer Aided Chemical Engineering Effect of backup detection levels in P-median formulations for optimal placement of detectors in mitigation systems 

  6. Ind. Eng. Chem. Res. Benavides-Serrano 53 5355 2013 10.1021/ie401369v A stochastic programming approach for the optimal placement of gas detectors: unavailability and voting strategies 

  7. J. Loss Prev. Process. Ind. Benavides-Serrano 35 339 2015 10.1016/j.jlp.2014.09.010 A quantitative assessment on the placement practices of gas detectors in the process industries 

  8. J. Water Resour. Plann. Manag. Berry 135 253 2009 10.1061/(ASCE)0733-9496(2009)135:4(253) Designing contamination warning systems for municipal water networks using imperfect sensors 

  9. J. Water Resour. Plann. Manag. Berry 132 218 2006 10.1061/(ASCE)0733-9496(2006)132:4(218) Sensor placement in municipal water networks with temporal integer programming models 

  10. Atmos. Environ. Blocken 41 238 2007 10.1016/j.atmosenv.2006.08.019 CFD simulation of the atmospheric boundary layer: wall function problems 

  11. Chin. J. Chem. Eng. Cen 26 1078 2018 10.1016/j.cjche.2017.10.031 A risk-based methodology for the optimal placement of hazardous gas detectors 

  12. Eur. J. Oper. Res. Cocozza-Thivent 182 1203 2007 10.1016/j.ejor.2006.09.042 MUT of a one out of two system with preventive maintenance 

  13. J. Hazard Mater. DeFriend 159 142 2008 10.1016/j.jhazmat.2007.07.123 A risk-based approach to flammable gas detector spacing 

  14. J. Hazard Mater. Delvosalle 130 200 2006 10.1016/j.jhazmat.2005.07.005 ARAMIS project: a comprehensive methodology for the identification of reference accident scenarios in process industries 

  15. 2003. WCNC 2003. 2003 IEEE Dhillon 3 1609 2003 10.1109/WCNC.2003.1200627 Sensor placement for effective coverage and surveillance in distributed sensor networks. Wireless Communications and Networking 

  16. Appl. Math. Comput. Gencer 195 542 2008 Chemical agent detector placement methodology 

  17. Oper. Res. Hakimi 13 462 1965 10.1287/opre.13.3.462 Optimum distribution of switching centers in a communication network and some related graph theoretic problems 

  18. Process Saf. Prog. Hirst 19 78 2000 10.1002/prs.680190206 A “worst case” methodology for risk assessment of major accident installations 

  19. 2008 Offshore Hydrocarbon Releases 2001-2008 

  20. 2007 Explosive Atmospheres-Part 29-2: Gas Detectors-Selection, Installation, Use and Maintenance of Detectors for Flammable Gases and Oxygen 

  21. 1990 IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer Glossaries 

  22. 2003 ANSI/ISA-RP 12.13.01 (IEC 61779-6 Mod): Recommended Practice for the Installation, Operation, and Maintenance of Combustible Gas Detection Instruments 

  23. 2010 ISA-TR 84.00.07-2010: Technical Report Guidance on the Evaluation of Fire, Combustible Gas and Toxic Gas System Effectiveness 

  24. Proc. ICNN'95 - Int. Conf. Neural Netw. Kennedy 4 1942 1995 10.1109/ICNN.1995.488968 Particle swarm optimization 

  25. J. Loss Prev. Process. Ind. Khan 15 467 2002 10.1016/S0950-4230(02)00050-5 A criterion for developing credible accident scenarios for risk assessment 

  26. Khurshid 1 2010 Evolutionary Computation (CEC), 2010 IEEE Congress on Application of ant colony optimization based algorithm in MIMO detection 

  27. J. Hazard Mater. Lee 158 417 2008 10.1016/j.jhazmat.2008.01.111 A risk-based sensor placement methodology 

  28. Comput. Chem. Eng. Legg 47 194 2012 10.1016/j.compchemeng.2012.05.010 A stochastic programming approach for gas detector placement using CFD-based dispersion simulations 

  29. J. Loss Prev. Process. Ind. Liu 51 29 2018 10.1016/j.jlp.2017.09.007 A global stochastic programming approach for the optimal placement of gas detectors with nonuniform unavailabilities 

  30. Chem. Eng. Trans. Mariottia 36 2014 Development of improved strategies for the lay-out of fire and gas detectors 

  31. J. Loss Prev. Process. Ind. Meysami 26 1407 2013 10.1016/j.jlp.2013.08.019 Worst-case identification of gas dispersion for gas detector mapping using dispersion modeling 

  32. Modarres 2009 Reliability Engineering and Risk Analysis 

  33. NFPA 2007 National Fire Protection Association, Standard for Water Spray Fixed Systems for Fire Protection 

  34. Chem. Biol. Sens. V Obenschain 5416 14 2004 10.1117/12.542892 Using ct-analyst to optimize sensor placement 

  35. Chem. Eng. Trans. Rad 53 145 2016 A risk-based MILP approach for optimal placement of flammable gas detectors 

  36. Process Saf. Environ. Protect. Rad 105 175 2017 10.1016/j.psep.2016.10.012 A risk-based methodology for optimum placement of flammable gas detectors within open process plants 

  37. Rausand 2008 System Reliability Theory: Models, Statistical Methods, and Applications 

  38. J. Wind Eng. Ind. Aerod. Richards 46-47 145 1993 10.1016/0167-6105(93)90124-7 Appropriate boundary conditions for computational wind engineering models using the k-ε turbulence model 

  39. Geogr. Anal. Rojeski 2 343 1970 10.1111/j.1538-4632.1970.tb00864.x Central facilities location under an investment constraint 

  40. Ross 183 2014 Markov Chains, Introduction to Probability Models 

  41. Atmos. Environ. Schatzmann 36 4811 2002 10.1016/S1352-2310(02)00424-7 Validation and application of obstacle-resolving urban dispersion models 

  42. Transport. Sci. Snyder 39 400 2005 10.1287/trsc.1040.0107 Reliability models for facility location: the expected failure cost case 

  43. Int. Conf. Wireless Commun. NETW. Mobile Comput. Sun 5293 2007 Research on project risk evaluation method based on Markov process 

  44. Struct. Saf. Timashev 56 68 2015 10.1016/j.strusafe.2015.05.006 Markov approach to early diagnostics, reliability assessment, residual life and optimal maintenance of pipeline systems 

  45. J. Loss Prev. Process. Ind. Vazquez-Roman 44 633 2016 10.1016/j.jlp.2016.03.004 A CFD-based approach for gas detectors allocation 

  46. Comput. Chem. Eng. Vianna 121 388 2019 10.1016/j.compchemeng.2018.11.008 The set covering problem applied to optimisation of gas detectors in chemical process plants 

  47. J. Hazard Mater. Wang 300 433 2015 10.1016/j.jhazmat.2015.07.028 The real-time estimation of hazardous gas dispersion by the integration of gas detectors, neural network and gas dispersion models 

  48. J. Sched. Yamashita 10 67 2007 10.1007/s10951-006-0326-4 Robust optimization models for project scheduling with resource availability cost 

  49. Zhang 2017 An Approach for Dangerous Gas Detectors Placement Optimization Considering Multi-Factors 

  50. Zhang 2018 A Quantitative Individual Risk Assessment Method in Process Facilities with Toxic Gas Release Hazards: A Combined Scenario Set and CFD Approach 

  51. J. Saf. Sci. Technol. Zhang 11 73 2015 Quantitative analysis on scenario set of hydrogen sulfide leakage for high-sulfur oil refinery installations 

  52. J. China Univ. Petrol. Zhang 40 156 2016 An approach to placement optimization of gas detectors based on leakage scenario set 

  53. Zhang 2018 Multi-objective Optimization for Placement of Gas Detectors Considering Failure Scenario 

  54. J. Loss Prev. Process. Ind. Zhang 48 87 2017 10.1016/j.jlp.2017.04.007 Worst maximum credible accidental scenarios (WMCAS)-A new methodology to identify accident scenarios for risk assessment 

  55. Zheng 2001 Analysis of the Quantitative Risk Evaluation Method of DNV. China Offshore Oil & Gas 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로