$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Transparent organic/silica nanocomposite coating that is flexible, omniphobic, and harder than a 9H pencil

Chemical engineering journal, v.396, 2020년, pp.125211 -   

Zhang, Kaka (Corresponding author.) ,  Huang, Shuaishuai ,  Wang, Jiandong ,  Liu, Guojun

Abstract AI-Helper 아이콘AI-Helper

Abstract Coatings that are transparent, wear resistant, flexible, and anti-smudge may be used on foldable touchscreens, for example. However, there have been only few reports on such coatings. This paper reports such a coating. The coating is prepared from the thermal curing of cycloaliphatic epoxy...

주제어

참고문헌 (50)

  1. ACS Nano Xu 10 1625 2016 10.1021/acsnano.5b07302 Microcavity-free broadband light outcoupling enhancement in flexible organic light-emitting diodes with nanostructured transparent metal-dielectric composite electrodes 

  2. ACS Appl. Mater. Interfaces Park 9 20299 2017 10.1021/acsami.7b04314 Flexible transparent conductive films with high performance and reliability using hybrid structures of continuous metal nanofiber networks for flexible optoelectronics 

  3. ACS Appl. Mater. Interfaces Penkov 11 9685 2019 10.1021/acsami.8b22091 Hard, flexible, and transparent nanolayered SiNx/BN periodical coatings 

  4. Prog. Org. Coat. Kim 143 2020 Foldable hard coating materials based on reaction-controlled polysilsesquioxane resin for flexible electronic devices 

  5. J. Appl. Polym. Sci. Kim 49012 2020 Highly robust and transparent flexible cover window films based on UV-curable polysilsesquioxane nano sol 

  6. Angew. Chem. Int. Ed. Zhang 58 12004 2019 10.1002/anie.201904210 Transparent omniphobic coating with glass-like wear resistance and polymer-like bendability 

  7. Macromol. Mater. Eng. Sangermano 295 603 2010 10.1002/mame.201000025 Scratch resistance enhancement of polymer coatings 

  8. Adv. Mater. Xu 24 3692 2012 10.1002/adma.201201197 The design and synthesis of hard and impermeable, yet flexible, conformal organic coatings 

  9. J. Mater. Chem. Mammeri 15 3787 2005 10.1039/b507309j Mechanical properties of hybrid organic-inorganic materials 

  10. Chem. Soc. Rev. Sanchez 40 696 2011 10.1039/c0cs00136h Applications of advanced hybrid organic-inorganic nanomaterials: from laboratory to market 

  11. Adv. Mater. Choi 29 1700205 2017 10.1002/adma.201700205 Flexible hard coating: glass-like wear resistant, yet plastic-like compliant, transparent protective coating for foldable displays 

  12. Nat. Mater. Ritchie 10 817 2011 10.1038/nmat3115 The conflicts between strength and toughness 

  13. Nat. Mater. Sanchez 4 277 2005 10.1038/nmat1339 Biomimetism and bioinspiration as tools for the design of innovative materials and systems 

  14. Nat. Mater. Holten-Andersen 6 669 2007 10.1038/nmat1956 Protective coatings on extensible biofibres 

  15. J. Am. Chem. Soc. Choi 123 11420 2001 10.1021/ja010720l Organic/inorganic hybrid composites from cubic silsesquioxanes 

  16. Chem. Soc. Rev. Chu 43 2784 2014 10.1039/C3CS60415B Superamphiphobic surfaces 

  17. J. Mater. Chem. A Lin 6 9049 2018 10.1039/C8TA01965G Durable and robust transparent superhydrophobic glass surfaces fabricated by a femtosecond laser with exceptional water repellency and thermostability 

  18. Science Tuteja 318 1618 2007 10.1126/science.1148326 Designing superoleophobic surfaces 

  19. Science Liu 346 1096 2014 10.1126/science.1254787 Turning a surface superrepellent even to completely wetting liquids 

  20. Nature Wong 477 443 2011 10.1038/nature10447 Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity 

  21. Adv. Mater. Liu 25 4477 2013 10.1002/adma.201301289 Organogel-based thin films for self-cleaning on various surfaces 

  22. J. Mater. Chem. A Urata 3 12626 2015 10.1039/C5TA02690C Self-lubricating organogels (SLUGs) with exceptional syneresis-induced anti-sticking properties against viscous emulsions and ices 

  23. J. Mater. Chem. A Wang 6 3414 2018 10.1039/C7TA10439A Effect of lubricant viscosity on the self-healing properties and electrically driven sliding of droplets on anisotropic slippery surfaces 

  24. J. Am. Chem. Soc. Cheng 134 10191 2012 10.1021/ja302903e A physical approach to specifically improve the mobility of alkane liquid drops 

  25. Angew. Chem. Int. Ed. Cheng 51 2956 2012 10.1002/anie.201108800 A statically oleophilic but dynamically oleophobic smooth nonperfluorinated surface 

  26. Angew. Chem. Int. Ed. Wang 55 244 2016 10.1002/anie.201509385 Covalently attached liquids: instant omniphobic surfaces with unprecedented repellency 

  27. Angew. Chem. Int. Ed. Rabnawaz 54 6516 2015 10.1002/anie.201501360 Graft-copolymer-based approach to clear, durable, and anti-smudge polyurethane coatings 

  28. Angew. Chem. Int. Ed. Rabnawaz 54 12722 2015 10.1002/anie.201504892 Fluorine-free anti-smudge polyurethane coatings 

  29. ACS Appl. Mater. Interfaces Zheng 9 25623 2017 10.1021/acsami.7b05732 UV-curable antismudge coatings 

  30. Adv. Mater. Interfaces Hu 3 1600001 2016 10.1002/admi.201600001 Clear and durable epoxy coatings that exhibit dynamic omniphobicity 

  31. ACS Appl. Mater. Interfaces Hu 9 9029 2017 10.1021/acsami.7b00126 Silicone-infused antismudge nanocoatings 

  32. Chem. Eng. J. Huang 351 210 2018 10.1016/j.cej.2018.06.103 Water-based anti-smudge NP-GLIDE polyurethane coatings 

  33. J. Nanomater. Ye 2019 1 2019 Development of a transparent coating to enhance self-cleaning capability and strength in conventional paper 

  34. RSC Adv. Khan 9 26703 2019 10.1039/C9RA04923A A novel dual-layer approach towards omniphobic polyurethane coatings 

  35. ACS Appl. Polym. Mater. Khan 1 2659 2019 10.1021/acsapm.9b00596 Simple design for durable and clear self-cleaning coatings 

  36. AIChE J. Wu 65 2019 10.1002/aic.16569 Preventing crude oil adhesion using fully waterborne coatings 

  37. Polymer Shen 132 198 2017 10.1016/j.polymer.2017.11.008 Synthesis and dynamic de-wetting properties of poly(arylene ether sulfone)- graft -poly(dimethyl siloxane) 

  38. J. Mater. Sci. Worzakowska 44 4069 2009 10.1007/s10853-009-3587-4 Thermal and dynamic mechanical properties of IPNS formed from unsaturated polyester resin and epoxy polyester 

  39. Nanoscale Horiz. Ge 5 65 2020 10.1039/C9NH00519F A “PDMS-in-water” emulsion enables mechanochemically robust superhydrophobic surfaces with self-healing nature 

  40. J. Am. Chem. Soc. Pan 135 578 2013 10.1021/ja310517s Superomniphobic surfaces for effective chemical shielding 

  41. J. Mater. Res. Oliver 7 1564 1992 10.1557/JMR.1992.1564 An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments 

  42. Chem. Eng. J. Huang 360 445 2019 10.1016/j.cej.2018.11.220 Water-based polyurethane formulations for robust superhydrophobic fabrics 

  43. Langmuir Gee 34 10102 2018 10.1021/acs.langmuir.8b01965 Effect of varying chain length and content of poly(dimethylsiloxane) on dynamic dewetting performance of NP-GLIDE polyurethane coatings 

  44. Chem. Eng. J. Lei 380 2020 10.1016/j.cej.2019.122554 Transparent omniphobic polyurethane coatings containing partially acetylated β-cyclodextrin as the polyol 

  45. Polymer Rocks 45 6799 2004 10.1016/j.polymer.2004.07.066 The kinetics and mechanism of cure of an amino-glycidyl epoxy resin by a co-anhydride as studied by FT-Raman spectroscopy 

  46. J. Phys. Chem. B Evenson 104 10608 2000 10.1021/jp002059y Surface esterification of poly(ethylene-alt-maleic anhydride) copolymer 

  47. J. Mater. Chem. A Hu 7 1519 2019 10.1039/C8TA11115D Preparation and comparison of NP-GLIDE, SLIPS, superhydrophobic, and other coatings from identical precursors at different mixing ratios 

  48. R. Nair, M. Taylor, B. Binder, Measuring hardness and more through nanoindentation, Fischer Technology, Inc. pp.2-12. 

  49. Prog. Mater. Sci. Diez-Pascual 67 1 2015 10.1016/j.pmatsci.2014.06.002 Nanoindentation in polymer nanocomposites 

  50. Adv. Condens. Matter Phys. Alisafaei 2015 1 2015 10.1155/2015/391579 Indentation depth dependent mechanical behavior in polymers 

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로